Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp
Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?
2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?
3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max
4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max
5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max
6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max
A B C M D E
Ta thấy ngay tứ giác ADME nội tiếp vì \(\widehat{DAE}+\widehat{DME}=180^o\)
Vậy thì \(\widehat{MDE}=\widehat{MAE}\) (Hai góc nội tiếp)
Mà do M là trung điểm BC nên MB = MA = MC hay \(\widehat{MCA}=\widehat{MAE}\)
Vậy \(\widehat{MDE}=\widehat{MCE}\)
Ta có \(S_{DME}=\frac{1}{2}.DM.ME=\frac{1}{2}.DM.DM.tan\widehat{MDE}=\frac{1}{2}.DM^2.tan\widehat{MCE}\)
Do góc C không thay đổi nên \(tan\widehat{MCE}\) không đổi.
Vậy \(S_{MDE}min\Leftrightarrow DMmin\)
Ta thấy DM là hình xiên, vậy DM nhỏ nhất khi nó là đường vuông góc.
Tóm lại: diện tích tam giác DME nhỏ nhất khi D, E lần lượt là chân đường vuông góc hạ từ M xuống AB và AC.