K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

Các bạn giúp mik nha!!!

29 tháng 6 2021

mik chịu thui hihi

22 tháng 8 2019

a, Xét ∆ABC vuông tại A có: B + C = 90o

                                        => 30o + C = 90o

                                        => C = 60o

b, Vì CD là tia phân giác của C 

=> ACD = DCB = ACB/2 = 60o/2 = 30o

Xét ∆ACB và ∆MCD 

Có: AD: cạnh chung (gt)

      ACD = DCM (vì CD là tia p/g của C)

      CA = CM (gt)

=> ∆ACB = ∆MCD (c.g.c)

c, XY vuông góc CA => KCA = 90o

Vì AK // CD => CKA = CDA (2 góc so le trong)

Xét ∆CAK vuông tại C và ∆ADC vuông tại A

Có: CA: cạnh chung

     CKA = CDA (cmt)

=> ∆CAK = ∆ADC (cgv-gn)

=> AK = DC (2 cạnh tương ứng) 

d, Vì ∆CAK = ∆ADC (câu c)

=> KAC = ACD (2 góc tương ứng)

Mà ACD = 30o

=> KAC = 30o

Xét ∆KAC vuông tại C có: KAC + AKC = 90o

                                      => 30o + AKC = 90o

                                      => AKC = 60o

22 tháng 8 2019

quên vẽ hình :( đường thẳng xy tự điền chữ vào cái đường thẳng trên cùng nhé :(( srr vì quên

K A C B D M

11 tháng 12 2021

a: \(\widehat{C}=60^0\)

24 tháng 3 2019

a. Ta có A+B+C=180 độ ( tổng 3 góc trong tam giác)

=> C= 180 độ - ( A+B) =60 độ

b. Xét 2 tam giác vuông : tam giác : DCA và DCM có :

DC  chung; góc DCA = góc DCM ( cd là phân giác của acm ); CM=CA (gt)

=>tam giác DCM=tam giác DCA (c.g.c)

c. xét hai tam giác vuông : DCA và KAC có :

AC chung; góc DCA = góc CAK ( so le trong vì DC // AK )

=> DCA=KAC(cgv. gn )=>AK=CD(2 góc tương ứng )

d. ta có:  tam giác : DCA = KAC ( câu c)=>AKC=ADC (2 góc tương ứng)

Mà CAK+AKC+KCA=180 độ ( tổng 3 góc trong tam giác)

=>AKC= 180-90-30=60 độ

vì KAC=ACD60/2=30 độ

8 tháng 7 2015

mk viết ngắn gọn thui nhé:

a) góc C = 1800 - Â - B = 180- 900 - 30 = 600

b)  * tam giác ACD = tam giác MCD (c.g.c) . Vì:

CD : cạnh chung

góc ACD = góc MCD

AC = MC

* Xét 2 tam giác vuông: ACK và CDA:

góc ACD = góc CAK                     (2 góc so le trong)

AC : cạnh chung

=> tam giác ACK = tam giác CDA  (cạnh góc vuông - góc nhọn kề)

=> AK = CD  (2 cạnh tương ứng)

c) theo câu b: tam giác ACK = tam giác CDA  (cạnh góc vuông - góc nhọn kề)

=> góc AKC = góc ADC     (2 góc tương ứng)

Trong tam giác ACD, có:

góc ADC = 1800 - góc A - (góc ACB : 2) = 1800 - 900 - 60: 2 = 600

=> góc AKC = góc ADC = 600

8 tháng 7 2015

K A D B M C x y

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minha/ ΔABM=ΔECMb/ AB//CEBài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BCa/ Chứng minh : ΔAKB=ΔAKCb/ Chứng minh: AK vuông góc với BCc/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AKBài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D...
Đọc tiếp

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh

a/ ΔABM=ΔECM

b/ AB//CE

Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC

a/ Chứng minh : ΔAKB=ΔAKC

b/ Chứng minh: AK vuông góc với BC

c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA

a/ Chứng minh ΔABM=ΔDCM

b/ Chứng minh AB//DC

c/ Chứng minh AM vuông góc với BC

d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o

Bài 4: Cho ΔABC vuông tại A có góc B=30o

a/ Tính góc C

b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D

c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD

d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD

e/ Tính góc AKC.

Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd

a/ Chứng minh AD=BC

b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD

c/ Chứng minh OE là phân giác của góc xOy

2
11 tháng 12 2016

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

11 tháng 12 2016

Toán hình dài, bn k nên đăng nhiều bài 1 lúc

nên đăng từng bài thui nha!!!

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0