Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔEMB có
BA=BE(gt)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))
BM chung
Do đó: ΔAMB=ΔEMB(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MEB}=90^0\)
hay ME\(\perp\)BC(đpcm)
b) Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)
\(\Leftrightarrow\widehat{ABC}=60^0\)
hay \(\widehat{ABE}=60^0\)
Xét ΔABE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
a) Ta có tia BM là tia phân giác góc ABC (GT)
suy ra góc ABM = góc MBC
Xét tam giác ABM và tam giác EBM có
BM chung
góc ABM = góc MBE (CMT)
BE = BA (GT)
suy ra tam giác ABM = tam giác EBM (c.g.c)
suy ra góc BAM = góc MEB ( 2 góc tương ứng )
Ta có tam giác ABC vuông tại A (GT)
suy ra góc BAM = 90
Mà góc BAM = góc MEB (CMT)
suy ra góc MEB = 90
suy ra ME vuông góc BC
b)Ta có tam giác BMA = tam giác BME (CMT)
suy ra BA = BE (2 cạnh tương ứng)
Xét tam giác AEB có
BA = BE (CMT)
suy ra tam giác AEB cân tại B (định nghĩa ) (1)
Ta có tam giác ABC vuông tại A (GT)
suy ra góc BAC = 90
Xét tam giác ABC có :
góc BAC + góc ABC + góc BCA = 180 (định lí tổng 3 góc trong 1 tam giác)
Mà góc BAC = 90 (CMT)
góc BCA = 30 (GT)
suy ra góc ABC = 60 (2)
Từ (1),(2) suy ra tam giác AEB đều (định nghĩa)
Ta có tam giác ABE đều (CMT)
suy ra góc BAE = 60 (T/C)
Ta có góc BAE + góc EAC = góc BAC
Mà góc BAC = 90 (CMT)
góc BAE = 60 (CMT)
suy ra góc EAC = 30
Mà góc ECA = 30 (GT)
suy ra góc EAC = góc ECA = 30
Xét tam giác EAC có
góc EAC = góc ECA (CMT)
suy ra tam giác EAC cân tại E (định nghĩa)
c)Ta có CH vuông góc BM tại H (GT)
suy ra góc BHF = góc BHC = 90
Xét tam giác BHF và tam giác BHC có
góc FBH = góc CBH (CMT)
BH chung
góc BHF = góc BHC = 90 (CMT)
suy ra tam giác BHF = tam giác BHC (g-c-g)
suy ra HF = HC ( 2 cạnh tương ứng )
Xét tam giác MHF và tam giác MHC có
MH chung
góc BHF = góc BHC = 90 (CMT)
HF = HC (CMT)
suy ra tam giác MHF = tam giác MHC (c-g-c)
suy ra MF = MC (2 cạnh tương ứng )
Ta có ME vuông góc BC (CMT)
suy ra góc MEB = góc MEC = 90
Ta có : góc BAC + góc CAF = 180 (2 góc kề bù )
Mà góc BAC = 90 (CMT)
suy ra góc CAF =90
Ta có tam giác BMA = tam giác BME (CMT)
suy ra MA = ME (2 cạnh tương ứng )
Xét tam giác AMF và tam giác EMC có
MA =ME (CMT)
góc MAF = góc MEC = 90(CMT)
MF = MC (CMT)
suy ra tam giác MAF = tam giác MEC (ch-cgv)
suy ra góc AMF = góc EMC (2 góc rương ứng)
Ta có góc AME + góc EMC = 180 (2 góc kề bù)
Mà góc EMC = góc AMF (CMT)
suy ra góc AME + góc AMF = 180
suy ra E;M;F thẳng hàng
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm
đố các bạn
bé kia chăn vịt khác thường
buộc đi cho được chẵn hàng mới ưa
hàng 2 xếp thấy chưa vừa,
hàng 3 xếp vẫn còn thừa 1 con,
hàng 4 xếp vẫn chưa tròn,
hàng 5 xếp thiếu 1 con mới đầy
xếp thành hàng 7, đẹp thay!
vịt bao nhiêu ? tính được ngay mới tài !