K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

Tự kẻ hình nha

- Vì tam giác ABC vuông tại A (gt)
=> CA vuông góc với AB (tc)
=> tam gics ADC vuông tại A (tc)
- Xét tam giác vuống ABC và tam giác vuông ADC, có:
+ Chung AC
+ AB = AD ( A là trung điểm BD)
=> Tam giác vuông ABC = tam giác vuông ADC (2 cạnh góc vuông)

- Vì tam giác vuông ABC = tam giác vuông ADC (cmt)
=> CB = CD (2 cạnh tương ứng)
=> tam gics CBD cân (định nghĩa)

- Vì A là trung điểm BD (gt)
=> CA là trung tuyến tam giác CBD (dấu hiệu)
- Vì K là trung điểm BC (gt)
=> DK là trung tuyến tam gics CBD (dấu hiệu) 
Mà CA và DK cắt nhau tại M (gt)
=> M là trọng tâm tam giác CBD (tc)
=> MC = 2/3 CA (tc)
=> MC = 2MA (đpcm)

- Gọi d là đường trung trực của AC 
- Gọi N là giao điểm của AC và d 
- Vì d là đường trung trực của AC (cách gọi)
=> d vuông góc với AC 
    => góc QNC = 90o (tc)  1
=> AN = CN
- Vì tam giác ADC vuông tại A (cmt)
=> góc DAC = 90(tc)  2
Từ 1 và 2 ta có:
=> DA // QN (đồng vị)
- Xét tam giác vuông QNA và tam giác vuông QNC, có:
+ Chung QN 
+ AN = CN (cmt)
=> tam giác vuông QNA = tam giác vuông QNC (2 cạnh góc vuông)
  => góc AQN = góc CQN (2 góc tương ứng) 
  => QA = QC (2 cạnh tương ứng)
- Vì DA // QN (cmt)
=> góc DAQ = góc AQN (so le trong)
=> góc CQN = góc ADQ (đồng vị)
Mà góc AQN = góc CQN (cmt)
=> góc DAQ = góc ADQ 
=> tam giác QAD cân tại Q (dấu hiệu)
=> QA = QD (định nghĩa) 
Mà QA = QC (cmt)
=> QD = QC 
=> MQ là trung tuyến của DC 
Mà M là trọng tâm của tam giác CBD (cmt)
=> BQ là trung tuyến tam giác CBD (tc)
=> B, M, Q thằng hàng (đpcm)

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem 

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm

19 tháng 8 2018

a/   áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :

             AB2  +AC= BC2

         <=> 6+AC2 = 102

         <=> AC2 = 64

         <=> AC=8 (cm )

ta có AB < AC < BC (6 < 8 < 10 )

=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )

b/   xét tam giác CAB và CAD có

         CA chung

         AB = AD ( vì A là trung điểm của BD )

       \(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )

=> tam giác CAB = tam giác CAD ( c - g - c )

=> CB = CD

=> tam giác BCD cân tại C

các câu còn lại mk k biết làm dâu 

học tốt

3 tháng 6 2017

A B C D K Q M 1 2 1

a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62

=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)

=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)

b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)

 => Tam giác BCD cân tại C (đpcm) 

c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.

=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)

d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)

Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C(2)

Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC

Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.

=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD

=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .

3 tháng 6 2017

a, AB2 + AC2 = BC2    \(\Rightarrow\) AC= BC - AB2    hay  AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8

 SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )

b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ) 

AB = AD ( A là trung điểm BD )

AC : cạnh chung

\(\Rightarrow\)\(\Delta\)ABC =    \(\Delta\)ADC ( 2 cạnh góc vuông )

\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )

\(\Rightarrow\)\(\Delta\)BCD cân

 ý c với d mình đang nghĩ đới nhá ^_^

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB)....
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0
Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)