Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BA = BD (gt)
=> tam giác ABD cân tại B (đn)
góc ABC = 60 (gt)
=> tam giác ABD đều (dấu hiệu)
b) ta có \(\widehat{A}\)=90 độ và \(\widehat{B}\)=60 độ => \(\widehat{C}\)=30 độ (1)
Mà BI là p/g của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => t.giác IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
xét t.giác BIA và t.giác CID có:
DI=AI(t.giác BIA=t.giác BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vì t.giác IBC cân)
=> t.giác BIA=t.giác CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
c) vì AB=1/2 BC nên BC=12 cm
áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
=> \(AC^2\)=\(BC^2-AB^2\)
=> \(AC^2\)=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
A B C D I 6cm
a) Xét tam giác ABD có AB = AD nên ABD là tam giác cân. Lại có góc \(\widehat{ABD}=60^o\) nên tam giác ABD là tam giác đều.
b) Do BI là phân giác góc ABC mà \(\widehat{ABC}=60^o\Rightarrow\widehat{IBC}=30^o\)
Lại có \(\widehat{ICB}=\widehat{ACB}=90^o-\widehat{ABC}=30^o\)
Xét tam giác IBC có IB = IC nên tam giác IBC cân tại I.
c) Xét tam giác IDB và tam giác IAB có:
IB chung
AB = DB (gt)
\(\widehat{DBI}=\widehat{ABI}\) (gt)
\(\Rightarrow\Delta IDB=\Delta IAB\left(c-g-c\right)\)
\(\Rightarrow\widehat{IDB}=\widehat{IAB}=90^o\) hay ID là đường cao tam giác IBC.
Lại có tam giác IBC cân tại I nên ID đồng thời là đường trung tuyến.
Vậy nên D là trung điểm BC.
d) Do AB = 6cm nên DB = AB = 6cm
Vậy thì BC = 2DB = 2.6 = 12cm
Do tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go ta có:
\(AC^2+AB^2=BC^2\Rightarrow AC^2+6^2=12^2\Rightarrow AC=\sqrt{108}\left(cm\right)\)
Bài giải :
a) Xét tam giác ABD có AB = AD nên ABD là tam giác cân. Lại có góc ^ABD=60o nên tam giác ABD là tam giác đều.
b) Do BI là phân giác góc ABC mà ^ABC=60o⇒^IBC=30o
Lại có ^ICB=^ACB=90o−^ABC=30o
Xét tam giác IBC có IB = IC nên tam giác IBC cân tại I.
c) Xét tam giác IDB và tam giác IAB có:
IB chung
AB = DB (gt)
^DBI=^ABI (gt)
⇒ΔIDB=ΔIAB(c−g−c)
⇒^IDB=^IAB=90o hay ID là đường cao tam giác IBC.
Lại có tam giác IBC cân tại I nên ID đồng thời là đường trung tuyến.
Vậy nên D là trung điểm BC.
d) Do AB = 6cm nên DB = AB = 6cm
Vậy thì BC = 2DB = 2.6 = 12cm
Do tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go ta có:
AC2+AB2=BC2⇒AC2+62=122⇒AC=√108(cm)
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).