Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình!
a) \(\frac{BE}{EN}=\frac{BQ}{QF}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\)
=> DE//NC hoặc DE//AC
b) Do DE//AC nên:
\(\frac{DE}{CN}=\frac{BD}{BC}\Rightarrow DE=\frac{BD}{BC}.CN\left(1\right)\)
Tương tự, ta có:
\(DF=\frac{CD}{BC}.BM\left(2\right)\)
Từ (1) và (2) \(=\frac{DE}{DF}=\frac{BD}{CD}\cdot\frac{CN}{BM}\)
Mà: \(\frac{BD}{CD}=\frac{AB}{AC}\)và \(\frac{CN}{BM}=\frac{AC}{AB}\)
Nên \(\frac{DE}{DF}=1\Rightarrow DE=DF\)
=> \(\widehat{D_1}=\widehat{DAC}=\widehat{DAB}=\widehat{D_2}\)
\(\Rightarrow\Delta ADE=\Delta ADF\)
\(\Rightarrow AE=AF\)
a) △ABC△ABC có AD phân giác:
=>BDDC=ABAC=>BDDC=ABAC
△BEQ △BNP△BEQ △BNP
=>BEEN=BQQP=>BEEN=BQQP
△BQM △BAC△BQM △BAC
=>BQQM=ABAC=BDDC=BQQP=BEEN=>BQQM=ABAC=BDDC=BQQP=BEEN
=>BEEN=BDDC=>BEEN=BDDC
Câu b: C/m tương tự DF//AB
dùng tính chất tỉ lệ thức, ....
=>đpcm
A B C D H E K I F
a) Xét t/giác HBA và t/giác ABC
có: \(\widehat{B}\):chung
\(\widehat{BHA}=\widehat{A}=90^0\)(gt)
=> t/giác HBA đồng dạng t/giác ABC (g.g)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8 (cm)
Ta có: t/giác HBA đồng dạng t/giác ABC
=> HB/AB = AH/AC = AB/BC
hay HB/6 = AH/8 = 6/10 = 3/5
=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)
c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)
=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)
Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)
\(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)
=> \(\widehat{AHK}=\widehat{C}\) (2)
Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)
Xét t/giác AKI và t/giác ABC
có: \(\widehat{A}=90^0\): chung
\(\widehat{AIK}=\widehat{C}\)(cmt)
=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC
d) Do AD là đường p/giác của t/giác ABC => \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)
<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)
=> BD = 10 - 40/7 = 30/7 (cm)
DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)
DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)
Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔDBF=ΔDEC
=>BF=EC và DF=DC
AB+BF=AF
AE+EC=AC
mà AB=AE và BF=EC
nên AF=AC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC