Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=\dfrac{48}{5}\left(cm\right)\)
Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=\dfrac{64}{5}\left(cm\right)\)
Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\Rightarrow\angle B\approx37\)
b) tam giác AHE vuông tại H có HN là đường cao \(\Rightarrow AN.AE=AH^2\)
tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH^2=HB.HC\)
\(\Rightarrow AN.AE=HB.HC\)
c) tam giác AHB vuông tại H có HM là đường cao \(\Rightarrow AH^2=AM.AB\)
\(\Rightarrow AN.AE=AM.AB\Rightarrow\dfrac{AM}{AE}=\dfrac{AN}{AB}\)
Xét \(\Delta AMN\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle EABchung\\\dfrac{AM}{AE}=\dfrac{AN}{AB}\end{matrix}\right.\)
\(\Rightarrow\Delta AMN\sim\Delta AEB\left(c-g-c\right)\Rightarrow\dfrac{AE}{AM}=\dfrac{BE}{MN}\)
mà \(BE=3MN\Rightarrow\dfrac{BE}{MN}=3\Rightarrow\dfrac{AE}{AM}=3\Rightarrow AE=3AM\)
Sửa đề: ΔABC vuông tại A
a: MB/NH=BH^2/AB:CH^2/AC
=BH^2/CH^2*AC/AB
=(AB/AC)^4*AC/AB=AB^3/AC^3
b: BC*BM*CN
=BC*BH^2/AB*CH^2/AC
=AH^4/AH=AH^3
c: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nen AN*AC=AH^2
ΔABC vuông tại A có AH vuông góc BC
nên HB*HC=AH^2
=>HB*HC=AM*AB
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH=MN
=>AM*AB=HB*HC=MN^2
d: BM*BA+AN*AC
=BH^2+AH^2=AB^2=BH*BC