Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
gt và hình tự vẽ nha
gọi hai cạnh góc vuông lần lượt là a;b
theo đề ra ta có : \(\frac{a}{8}=\frac{b}{15};a+b=34\left(cm\right)\)
áp dụng T/C của dãy tỉ số = nhau ta có :
\(\frac{a}{8}=\frac{b}{15}=\frac{a+b}{8+15}=\frac{34}{23}\)tính tiếp ra hai cạnh góc vuông đó
rồi tính diệp tích
còn chu vi ko cần phải lằng nhằng
chu vi tam giác đó là : 34x2=38 (cm)
(Bạn tự vẽ hình giùm)
1/ \(\Delta ABC\)vuông tại A
=> \(BC^2=AB^2+AC^2\)(định lý Pitago)
=> \(BC^2=9^2+6^2\)
=> \(BC^2=9+36\)
=> \(BC^2=45\)
=> \(BC=\sqrt{45}\)(cm)
2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)
\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta BAD\)= \(\Delta EAD\)(c. g. c) (đpcm)
3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung
AB = AE (\(\Delta BAD\)= \(\Delta EAD\))
\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)= \(\Delta EAD\))
=> \(\Delta ABC\)= \(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)
nên \(\Delta ACM\)cân tại A
và \(\widehat{A}=90^o\)
=> \(\Delta ACM\)vuông cân tại A (đpcm)
4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)
=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)
=> \(\widehat{MEC}>90^o\)(tự chứng minh)
=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC
áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2 BC=3căn5 cm câu b xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ) xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân
gọi chiều dái các cạnh lần lượt là a;b;c
Ta có c là cạnh huyền a;b là các cạnh góc vuông
Theo định lí Py-ta-go ta có: c2=a2+b2
mak c=102
=> a2+b2=1022=10404
Theo đề a/8=b/15
Áp dụng tính chất dãy tỉ số = nhau:
=> \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{10404}{289}=36\)
a=36.8=288cm
b=36.15=540cm
gọi cạnh huyền là c, 2 cạnh góc vuông lần lượt là a và b.
Áp dụng định lí pi ta gô về tam giác vuông ta có:
a2+b2=c2=1022=10404(cm)
Mặt khác do 2 cạnh góc vuông tỉ lệ với 8:15
=>a/8=b/15
Bình phương 2 vế ta được:
a2/64=b2/225
Theo tính chất dãy các tỉ số bằng nhau, ta được:
a2/64=b2/225=a2+b2/64+225=10404/289=36
=>a2=36.64=>a=48
=>b2=36.225=90
Vậy 2 cạnh góc vuông cần tìm là 48cm và 90cm.
Chu vi tam giác ABC là: AB+AC+BC=24
=>AB+AC=24-BC
Diện tích tam giác ABC là: \(\frac{AB.AC}{2}=24=>AB.AC=48=>2.AB.AC=96\) (Vì tam giác ABC vuông tại A)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC có:
\(AB^2+AC^2=BC^2\)
=>\(AB^2+2.AB.AC+AC^2=BC^2+2.AB.AC\)
=>\(\left(AB+AC\right)^2=BC^2+96\)
=>\(\left(24-BC\right)^2=BC^2+96\)
=>\(24^2-2.24.BC+BC^2=BC^2+96\)
=>\(576-48.BC=96\)
=>48.BC=576-96
=>48.BC=480
=>BC=10(cm)
=>AB+AC=24-10=14(cm)
=>AB=14-AC
mà AB.AC=48
=>(14-AC).AC=48=8.6=6.8
=>(14-AC).AC=(14-6).8=(14-8).6
=>AC=6,8
-Với AC=6 cm=>AB=14-6=8(cm)
-Với AB=8 cm=>AC=14-8=6(cm)
Vậy độ dài 3 cạnh của tam giác ABC là: 10 cm, 8 cm, 6 cm
Nhìn qua cứ tưởng dễ đọc kĩ cái đề mới thấy...