K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông ta có

TheoPytago:BC2=AB2+AC2=152+202=625BC=25(cm)Trong:ΔBCDC;CABDBC2=BA.BDBD=62515=1253(cm)AD=BDAB=125315=803(cm)CD=DA.DB=803.1253=1003(cm)

21 tháng 7 2021

13 tháng 10 2022

a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)

b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)

=>HF=2HE

NV
28 tháng 7 2021

a. Gọi G là trung điểm AD

Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

\(CD=BC-BD=40\left(cm\right)\)

Trong tam giác vuông BDI:

\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)

\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)

Trong tam giác vuông CDK:

\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)

\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)

NV
28 tháng 7 2021

b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)

\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADM:

\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)

 \(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)

\(AI=AB-BI=50\left(cm\right)\)

Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)

Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)

Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)

Hai tam giác vuông AGF và AKD đồng dạng

\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)

\(\Rightarrow DF=AF=35\left(cm\right)\)

\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)