Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : AB = BC x sin C = 10 x sin 600 = \(5\sqrt{3}\) (cm)
AC = \(\sqrt{BC^2-AC^2}=\sqrt{10^2-\left(5\sqrt{3}\right)^2}=5\) (cm)
AH = \(\frac{AB.AC}{BC}=\frac{5.5\sqrt{3}}{10}=\frac{5\sqrt{3}}{2}\) (cm)
A B C H
\(cosC=cos30^0=\frac{AC}{BC}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\)\(BC=\frac{AC.2}{\sqrt{3}}=\frac{16}{\sqrt{3}}\)
\(tanC=tan30^0=\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow\)\(AB=\frac{AC}{\sqrt{3}}=\frac{8}{\sqrt{3}}\)
\(sinC=sin30^0=\frac{AH}{AC}=\frac{1}{2}\)
\(\Rightarrow\)\(AH=\frac{AC}{2}=4\)
A B C H
Ta có: Tam giác ABC vuông và có góc B bằng 30 độ
=> góc C = 60 độ
=> Tam giác ABC là nửa tam giác đều
=> \(\frac{BC\sqrt{3}}{2}=AB=5\left(cm\right)\)
=> BC= \(\frac{5.2}{\sqrt{3}}=\frac{10}{\sqrt{3}}\)
=> AC = \(\frac{10}{\sqrt{3}}:2=\frac{5\sqrt{3}}{3}\) (cm)
=> AH = \(\frac{AB.AC}{BC}=\frac{5}{2}\left(cm\right)\)
b, Stam giác ABC=\(\frac{AB.AC}{2}=\frac{25\sqrt{3}}{6}\left(cm^2\right)\)
a, \(\Delta ABC,\hat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow AC^2=64\)
\(\Leftrightarrow AC=8\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:
\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)
Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)
Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)
A B C H
Ta có \(\tan B=\tan30^0=\frac{AC}{AB}\Rightarrow\frac{\sqrt{3}}{3}=\frac{AC}{4}\Rightarrow AC=\frac{4\sqrt{3}}{3}\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+\left(\frac{4\sqrt{3}}{3}\right)^2}=\frac{8\sqrt{3}}{3}\)
Lại có \(AH.BC=AB.AC\Rightarrow AH=\frac{4.\frac{4\sqrt{3}}{3}}{\frac{8\sqrt{3}}{3}}=2\)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
a) Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin30^0\)
\(=10\cdot\dfrac{1}{2}=5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=10^2-5^2=75\)
hay \(AC=5\sqrt{3}\left(cm\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=5\cdot5\sqrt{3}=25\sqrt{3}\)
hay \(AH=\dfrac{25\sqrt{3}}{10}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)