K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

Xét tam giác ABC vuông tại A, đường cao AH: AB.AC=AH.BC

Xét tam giác AHC vuông tại H, đường cao HF : AF.AC=AH2

Xét tam giác AHB vuông tại H, đường cao HE: AE.AB=AH

Nhân các đẳng thức trên vế theo vế : AE.AF.AB.AC=AH4 => 2SAEF.AH.BC=AH4 => SAEF=x3/4a

Vậy SAEF lớn nhất khi x lớn nhất, khi đó đường cao của tam giác vuông là lớn nhất --> trùng với trung tuyến --> x=a

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.

24 tháng 10 2019

A B C H I K 4 x

đặt AB=x

dễ chứng tam giác HBA và tam giác ABC đồng dạng => AB2 =BH.BC <=> x2 = 4BH => BH= \(\frac{x^2}{4}\)

pytago cho tam giác HAB : AB2= BH2+ AH2 => AH2 = x2\(\frac{x^4}{16}\)=> AH = \(\frac{x}{4}\sqrt{16-x^2}\)

SAIHK = HI.HK \(\le\frac{HI^2+HK^2}{2}=\frac{AH^2}{2}\)\(\frac{x^2\left(16-x^2\right)}{32}\)

áp dụng ab\(\le\frac{\left(a+b\right)^2}{4}\)=> \(x^2\left(16-x^2\right)\le\frac{\left(x^2+16-x^2\right)^2}{4}=\frac{16^2}{4}\)

=> SAIHK \(\le\frac{16^2}{4.32}=2\)

Đạt được khi HI=HK và x2=16-x2 => x=AB= 2\(\sqrt{2}\) 

HI=HK => ABC vuông cân ở A

30 tháng 12 2019

A B C D M E K

a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)

\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )

b ) Ta có : ME là đường trung bình của tam giác ABC 

\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)

\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)

ADME : hình chữ nhật 

\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)

c ) Dễ thấy AC là đường trung trực của MK

\(\Rightarrow AM=AK\)và \(CM=CK\)

Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )

\(\Rightarrow AM=AK=CM=CK\)

\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )

d ) Ta có : \(ME=\frac{1}{2}AB\)

\(\Rightarrow AB=2ME=MK\)

Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)

\(\Leftrightarrow AC=AB\) ( vì AB = MK )

\(\Leftrightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông