Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
Do đó: ΔABH\(\sim\)ΔCBA
Suy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc C chung
Do đo: ΔACH\(\sim\)ΔBCA
Suy ra: CA/CB=CH/CA
hay \(CA^2=CH\cdot CB\)
b: \(BC^2=AB^2+AC^2\)
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
Suy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
B A C H
a)xét tam giác AHB và tam giác CAB có:
góc AHB=góc BAC=90 độ
góc B chung
\(\Rightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)(chỗ này là câu b luôn nhé)
c)xét tam giác AHC và tam giá BAC có:
góc AHC=góc BAC=90 độ
góc C chung
\(\Rightarrow\Delta AHC\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{AC}{BC}=\dfrac{HC}{AC}\Rightarrow AC^2=HC\cdot BC\)
d)từ câu b)(hay câu a) ta có \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AH^2}{AC^2}=\dfrac{AB^2}{BC^2}\)(1)
từ câu c) ta có: \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow\dfrac{AH^2}{AB^2}=\dfrac{AC^2}{BC^2}\) (2)
từ (1) và (2) \(\Rightarrow\dfrac{AH^2}{AC^2}+\dfrac{AH^2}{AB^2}=\dfrac{AB^2}{BC^2}+\dfrac{AC^2}{BC^2}\\ \Leftrightarrow^{ }AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\\ \Leftrightarrow AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=1\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\)
a) xét tam giác HAC và tam giác ABC có
Góc H = Góc A (=90o)
Góc C chung
=> tam giác HAC ~tam giác ABC (g.g)
=>\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)
=>AH.BC=AB.AC(đpcm)
b) Xét tam giác ABC và tam giác HBA có
Góc A=Góc H (=900)
Góc B chung
=>tam giác ABC ~tam giác HBA (g.g)
=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
=>AB2=BH.BC (1)
c)Tam giác HAC~ tam giác ABC (cmt)
=>\(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=>AC2=HC.BC (2)
d) Từ (1) và (2) suy ra
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BC.BH}+\dfrac{1}{BC.CH}=\dfrac{CH+BH}{BC.BH.CH}=\dfrac{BC}{BC.BH.CH}=\dfrac{1}{BH.CH}\)=>\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH.CH}\left(3\right)\)
Từ (1)và (3) suy ra
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)(đpcm)
A B C H
a) ta có SABC= 1/2.AB.AC=1/2AH.BC(L7cmroi)
b) △ABC~△BHA(gg)=> \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow AB^2=BH.BC\left(đpcm\right)\)
c)△BHA~△AHC(g-g(cùng ~△ABC))=> \(\frac{AH}{BH}=\frac{CH}{AH}\Leftrightarrow AH^2=BH.CH\left(cmx\right)\)
ta chứng minh được tam giác HCA ~tam giác ACB (g.g) do : ^CHA = ^CAB(=90 độ) và ^HCA=^ACB(do H thuộc BC) => AH :AB = AC : BC => AH. BC =AC.AB
b) tương tự ta c/m tam giác HBA ~ tam giác ABC (g.g) lí do tương tự như bên trên có hai góc =90 độ (xem trong hình vẽ ^BHA=^BAC) VÀ có chung 1 góc abc => AB:BC=BH:AB=>AB.AB=BH.BC
C) Có tam giác HCA ~ tam giác ACB => ^HAC=^ABC(2 góc tương ứng) mà có góc HCA+góc HAC =90độ(t/c trong tam giác vuông) mặt khác ta cũng có góc ABH + HAB = 90độ (do tam giác ABC vuông tại A) => GÓC HCA =góc HAB ( cùng phụ với góc HAC và ABH) CHÚ Ý góc ABH = góc ABC . CUỐI cùng c/m tam giác HCA ~ tam giác HAB (g.g) => ah :ch =bh : ah => AH .AH =BH .CH
Áp dụng các hệ thức lượng trong tam giác vuông ,ta được:
\(AH^2=BH.CH\)
\(AH.BC=AB.AC\)
Lớp 8 chưa học lượng giác mà??
a) Xét tam giác AHC vuông tại H và tam giác AHB vuông tại H
Áp dụng định lý Pytago cho cả 2 tam giác:
Tam giác AHC: AH^2= AC^2 - CH^2 (1)
TAM GIÁC AHB: AH^2 =AB^2 - BH^2 (2)
(1) (2) Suy ra 2AH^2 = AB^2 + AC^2 - CH^2 - BH^2
2AH^2 = BC^2 - CH^2 - BH^2
2AH^2 = (BH+CH)^2 - CH^2 - BH^2
2AH^2 = 2BH.CH
AH^2 = BH.CH
b) Xét tam giác AHB và tam giác CAB:
H^ = A^ = 90 độ
B^ chung
2 tam giác AHB và tam giác CAB đồng dạng trường hợp (g-g)
Suy ra AH/CA = HB/AB= AB/BC
Vậy AH.BC = AB.AC
c) Xét ΔABH có BI là đường phân giác
=>\(\dfrac{AB}{BH}\)=\(\dfrac{AI}{IH}\)(1)
Xét ΔABC có BD là đường phân giác
=> \(\dfrac{BC}{AB}\)=\(\dfrac{DC}{AD}\)
Mà \(\dfrac{BC}{AB}\)= \(\dfrac{AB}{BH}\)(cmt)
=>\(\dfrac{DC}{AD}\)=\(\dfrac{AB}{BH}\) (2)
Từ (1)(2)=>\(\dfrac{AI}{IH}\)=\(\dfrac{DC}{AD}\)
b, Xét \(\Delta ABHvà\Delta CBAcó:\)
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABH}=\widehat{CBA}\)(là góc chung)
Vậy \(\Delta ABH\sim\Delta CBA\left(g-g\right)\)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow AB.AB=BC.BH\)
\(\Rightarrow AB^2=BC.BH\left(đpcm\right)\)
a,Xét \(\Delta BACvà\Delta AHCó:\)
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{BCA}=\widehat{ACH}\)(là góc chung)
Vậy \(\Delta BAC\sim\Delta AHC\left(g-g\right)\)
Lời giải:
1.
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$
Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)
$\Rightarrow CA^2=CH.CB$
Do đó:
$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$
(đpcm)
b. Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$
$\Rightarrow AH^2=BH.CH$
c.
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$
$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$
$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$
.d. Hiển nhiên theo công thức diện tích.
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)