Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Xét : \(\Delta AHB,\Delta CAB\) có:
\(\widehat{H}=\widehat{A}=90^o\)
=> C là góc chung.
=> AHB đồng dạng CAB (g.g)
\(\Rightarrow\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.HC\Leftrightarrow AB=\sqrt{175.112}=140\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)
Vì AD là tia phân giác trong tam giác ABC.
\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}\)
Theo tính chất của dãy số bằng nhau ta có:
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)
\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5AB}{7}=\frac{5.140}{7}=100\)
HD = HB - BD = 112 - 100 = 12
\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)
\(\dfrac{AB}{BC}\) = \(\dfrac{HB}{AB}\) \(\Rightarrow\) AB2 = HB. BC \(\Rightarrow\) AB = \(\sqrt{63.175}\)
= 105
Bạn làm nhầm phần này rồi ><
BC=2*AM=10cm
AC=căn 10^2-6^2=8cm
AH=6*8/10=4,8cm
BH=AB^2/BC=6^2/10=3,6cm
MH=căn 5^2-4,8^2=1,4cm
Bài này tính toán được bình thường dù phân giác AD
Nhưng kết quả vô cùng xấu, bạn kiểm tra lại số liệu
(Hệ thức lượng \(AB^2=BH.BC\) tính được \(BC=\dfrac{80}{9}\), sau đó Pitago tính AC thì nhận được 1 kết quả vô cùng xấu, dẫn tới việc sử dụng định lý phân giác \(\dfrac{BD}{AB}=\dfrac{DC}{AC}\) để tính toán BD, DC sẽ cho 1 kết quả xấu còn kinh khủng hơn)
a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=35^2-21^2=784\)
hay AC=28cm
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
\(\Leftrightarrow\widehat{ACB}=37^0\)
AM = 3,125 , AD =15\(\sqrt{2}\): 7
a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
AH^2=BH.HCAH2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{HB}=2,25cm⇔HC=HBAH2=2,25cm.
BC=BH+HC=4+2,25=6,25cmBC=BH+HC=4+2,25=6,25cm.
AM=\dfrac{BC}{2}=3,125cmAM=2BC=3,125cm.
b) Áp dụng định lý Pi-ta-go ta có:
AB=\sqrt{AH^2+BH^2}=5cmAB=AH2+BH2=5cm.
AC=\sqrt{BC^2-AB^2}=\sqrt{6,25^2-5^2}=3,75cmAC=BC2−AB2=6,252−52=3,75cm.
Theo tính chất tia phân giác của một góc:\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{3,75}=\dfrac{4}{3}DCBD=ACAB=3,755=34.
Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.
Từ đó ta có \dfrac{DE}{AB}=\dfrac{DC}{BC}=\dfrac{3}{7}\Rightarrow DE=\dfrac{3}{7}.5=\dfrac{15}{7}\left(cm\right)ABDE=BCDC=73⇒DE=73.5=715(cm)
\Rightarrow AD=\dfrac{15\sqrt{2}}{7}\left(cm\right)⇒AD=7152(cm).