Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E x
trên cạnh BC lấy điểm E sao cho AD=AE thì E nằm giữa B và C
TA CÓ \(\Delta ADB\) = \(\Delta BED\)\(\left(cgc\right)\)
=>AD=DE VÀ \(\widehat{DAB}=\widehat{BED}=90^0\)
MÀ \(\widehat{EBX}>\widehat{C}\) NÊN \(\widehat{DEC}>\widehat{C}\)
=>\(DC>DE\)
MÀ \(\hept{\begin{cases}AD=DE\\DE< DC\end{cases}=>\left(AD< DC\right)}\)
a)
ta có : AB<AC
suy ra ACB<ABC
ABH=90-60=30
b)
DAC=DAB=90-(A/2)=90-30=60
ABI=90-30=60
xét 2 tam giác vuông AIB và BHA có
AB(chung)
ta có:
BAH=ABD=60(cmt)
suy ra AIB=BHA(CH-GN)
c)
theo câu a, ta có tam giác AIB=BHA(CH-GN)
suy ra ABI=BAC=60 độ
BEA=180-60-60=60 độ
ta có: ABE=BEA=EAB=60 suy ra tam giác ABE đều
a,Ta có :
AB<AC (gt)
=> C<B
=> góc ABC < góc ACB
Tính góc ABH
Ta có : A+H+B=180 ( tổng 3 góc trong 1 tam giác )
60+90+B=180 ( góc H =90 vì vuông góc )
150+B=180
B=180-150
B=30
=>ABH=30
b,Xét 2 tg AIB= tg BHA vuông tại I và H
Có : I là góc chung
=> tg AIB= tg BHA(gcg)
c,ko bt lm
d,ko bt luôn
B A C D E H
Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.
a/ Xét \(\Delta ABD\)vuông tại \(D\)có:
\(AD^2+BD^2=AB^2\left(pytago\right)\)
\(AD^2+8^2=10^2\)
\(AD^2=10^2-8^2=100-64=36\)
\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)
b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC
=> AH là đường cao thứ 3 (Vậy thôi đủ xài)
=> AH cũng là đường phân giác vì tam giác ABC cân tại A
Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)
Xét \(\Delta AEC\)và \(\Delta ABD\)có:
\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)
\(\Rightarrow CE=BD\)
c/ (đã chứng minh câu b)
d/ Vì tam giác AEC = tam giác ADB
=> \(\widehat{ACE}=\widehat{ABD}\)
Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)
\(\Rightarrow\Delta BHC\)cân tại \(H\)
e/ Xét \(\Delta AHD\)vuông tại \(H\)có:
\(AD^2+HD^2=AH^2\left(pytago\right)\)
\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)
\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)