K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

xét tam giác ADH(vuông tại H) và tam giác ADE(vuông tại E) có :

góc HAD= góc EAD( vì AD là phân giác của góc HAC).

AD chung.

do đó: tam giác ADH= tam giác AED( cạnh huyền. Góc nhọn).

=>HD=DE.

xét tam giác HDK và tam giác EDC có:

góc AHD= góc CED=90 độ.

HD=DE. 

góc HDK= góc EDC( 2 góc đối đỉnh)

do đó tam giác HDK = tam giác EDC(g-c-g). => DK=DC=> tam giác DKC cân tại D

 

e: I là trực tâm của ΔBAD

=>DI vuông góc AB

=>DI//AC

=>góc BDI=góc ACB

DT là phân giác của góc IDB

=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB

DI//AC

=>góc IDA=góc DAC

AD là phân giác của góc HAC

=>góc DAC=1/2*góc HAC

=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ

=>góc IDT+góc IDA=1/2*90=45 độ

=>góc TDA=45 độ

=>ΔTDA vuông cân

14 tháng 5 2023

hack tht! cảm ơn ạ

 

a: Xét ΔADH vuông tại H và ΔADE vuông tại E có

AD chung

góc HAD=góc EAD

=>ΔADH=ΔADE

=>Dh=DE

b: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

góc HDK=góc EDC

=>ΔDHK=ΔDEC

=>DK=DC

c: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

=>ΔAKC cân tại A

mà AF là trung tuyến

nên AF là phân giác của góc KAC

=>A,D,F thẳng hàng

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

2 tháng 10 2020

ngu mới ko bt làm

học tốt :)

10 tháng 8 2018

CM:DH=DE

Vì AH là đường cao=>góc AHC=90o

Vì DE vuông góc với AC=>góc AEP=90o

AHC=AEP(=90o)

Xét tam giác ADE và tam giác ADH có:

AHC=AEP(=90)

AD:cạnh chung

EAD=HAD(AD là phân giác của tam giác AHC)

=>tam giác ADE=tam giác ADH(cạnh huyền-góc nhọn)

=>DE=DH(2 cạnh tương ứng)

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

góc HAD=góc EAD

=>ΔAHD=ΔAED

=>DH=DE

b: Xét ΔAEK vuôngtại E và ΔAHC vuông tại H có

AE=AH

góc EAK chung

=>ΔAEK=ΔAHC

=>AK=AC

=>ΔAKC cân tại A

c: Xét ΔKHE và ΔCEH có

KH=CE
HE chung

KE=CH

=>ΔKHE=ΔCEH

d: CB=8+32=40cm

\(AC=\sqrt{32\cdot40}=\sqrt{1280}=16\sqrt{5}\left(cm\right)\)

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm