K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

Vì M là trung điểm BC nên \(BM=\dfrac{1}{2}BC=\dfrac{15}{2}\left(cm\right)\)

9 tháng 9 2021

\(a,\) \(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow\) MN là đường trung bình tam giác ABC 

\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)

\(b,MN=\dfrac{1}{2}AC\left(tính.chất.đtb\right)\)

Mà \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-12^2}=5\left(cm\right)\left(pytago\right)\)

\(\Rightarrow MN=\dfrac{5}{2}\left(cm\right)\)

\(c,\left\{{}\begin{matrix}AM=MB\\AP=PC\end{matrix}\right.\Rightarrow\) MP là đường trung bình tam giác ABC

\(\Rightarrow MP=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)

\(\left\{{}\begin{matrix}AP=PC\\BN=NC\end{matrix}\right.\Rightarrow\) NP là đường trung bình tam giác ABC

\(\Rightarrow NP=\dfrac{1}{2}AB=6\left(cm\right)\)

a: Xét ΔBAC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

hay MN\(\perp\)AB

b: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=5(cm)

\(\Leftrightarrow MN=2.5\left(cm\right)\)

2 tháng 4 2020

a) Ta có

+)AM=AB-BM=6-3,75=2,25

+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)

=> AN=3(cm)

CN=AC-AN=8-3=5(cm)

b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)

+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)

(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)

=> BI=CI => I là trung điểm BC

c) \(\Delta\)ABC vuông tại A

=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)

=> BC=10cm

Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)

=> BN là phân giác \(\widehat{ABC}\)

https://olm.vn/hoi-dap/detail/5736377385.html

bn vào đi ~

20 tháng 12 2020

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)

14 tháng 9 2016

MK vẽ hình ko chính xac lam bn thông cảm hen!!! A B C M F E

a)  Xét ΔABC,có:   AB2 + AC2 = 162 + 122 = 400

                         BC2 = 202 = 400

Do đó AB2 + AC2 = BC2

Theo ĐL  Pytago đảo, ΔABC vuông tại A

b)  Do AB vuông góc AC

          MF vuông góc AC

Nên MF // AB

Xét ΔABC có:     MB=MC(gt)

                           MF// AB(cm trên)

Suy ra MF là đường TB của ΔABC

       => F là trung điểm AC

Vậy FA=FC(đpcm)

c) Xét ΔABC có :       MB = MC(gt)

                                  MA = ME (gt)

Nên ME là đường TB của ΔABC 

  => ME // AC ; ME =\(\frac{1}{2}\)AC

Mà AC vuông góc AB (cm trên)

Vậy ME vuông góc với AB

Do AC= 12 cm (gt)

Nên ME = 1/2 AC = 12/2= 6cm

Vậy ME= 6cm.