K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

A B C M D

CM : a) Xét tam giác ABM và tam giác DCM

Có BM = CM (gt)

  góc AMB = góc CMD (đối đỉnh)

MA = MD (gt)

=> tam giác ABM = tam giác DCM (c.g.c)

b) Ta có: tam giác ABM = tam giác DCM (cmt)

=> góc B = góc MCD (hai góc tương ứng)

Mà góc B và góc MCD ở vị trí so le trong

=> AB // DC

c) Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

BM = CM (gt)

 AM : chung

=> tam giác ABM = tam giác ACM (c.c.c)

=> góc BMA = góc CMA (hai góc tương ứng)

Mà góc BMA + góc CMA = 1800 (kề bù)

hay 2\(\widehat{BMA}\)= 1800

=> góc BMA = 1800 : 2

=> góc BMA = 900

=> AM \(\perp\)BC

d) Để góc ADC = 450

<=> tam giác ABC cân tại A

9 tháng 4 2018

Áp dụng định lý Pytago ta có:

AB2+AC2=BC2

=>BC2=32+42=25

=>BC=\(\sqrt{25}\)=5

b)Xét tam giác ADM và tam giác CDM có:

BM=DM(gt)

góc AMD= góc CMD(đối đỉnh)

MA=MC(gt)

=>tam giác ABM = tam giác CDM(c.g.c)

=>góc BAM= góc DCM =90o

=>DC là  vuông góc với AC

9 tháng 4 2018

mình cần câu c, d 

3 tháng 8 2019

A) Vì tam giác ABC cân tại A nên AB=AB ( 2 cạnh t.ư) và ABC=ACB (2 góc t.ư)

    xét tam giác ABM và tam giác ACM 

        AC=AB (cmt)

      ABC= ACB (cmt)

      BM=MC

     Suy ra tam giác ABM = tam giác ACM ( C.G.C)

 B) vì tam giác ABM = tam giác ACM (câu a ) nên AMB= AMC ( 2 góc t.ư)

    ta có AMB+AMC = 180độ (2 góc kề bù)

   suy ra AMB=AMC =180độ : 2= 90độ

  suy ra AM vuông góc với BC

C) Vì AMB  và DMC là 2 góc đối đỉnh nên AMB=DMC

    Xét tam giác ABM và tam giác DCM

     AM=MD 

    AMB=DMC (2 góc đối đỉnh)

   BM = MC

  suy ra tam giác AMB= tam giác DMC (C.G.C)

D) Vì tam giác AMB = tam giác DMC (câu c ) nên ABM = MCD ( 2 góc t.ư)

     mà 2 góc này ở vị trí SLT nên AB//CD

CHÚC BẠN HỌC TỐT!

    

26 tháng 11 2019

bạn tự vẽ hình nha 

a) xét tg ABM và tg CDM có 

  MA=MC(M là trung điểm AC )

  \(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

  MB=MD(gt)

\(\Rightarrow\)tg ABM=tg CDM (c-g-c)

b) bạn xem lại đề bài nha mik nghĩ là đề sai 

c) ta có MB=MD,MA=MC(gt)

 mà M lại là trung điểm của BD,AC

\(\Rightarrow\)ABCD là hình chữ nhật 

có E là trung diểm BC 

mà EM cắt AD tại F

\(\Rightarrow F\)là trung điểm AD (dpcm)

26 tháng 11 2019

P/s : sửa đề : MB = MD B C E M F D A

a) Xét tam giác ABM và tam giác CDM có : 

AM = CM ( vì M là trung điểm của AC ) 

Góc AMB = góc CMD ( 2 góc đối đỉnh )

MB = MD ( GT )

=> tam giác ABM = tam giác CDM ( c - g - c ) 

b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM

=> Góc BAM = Góc MCD ( 2 góc tương ứng )

Mà góc BAM = 90( Tam giác ABC vuông tại A )

=> Góc MCD = 90o

=> AC vuông góc với DC tại C 

c) +) Xét tam giác ABC có :

E là trung điểm của BC ( GT )

M là trung điểm của AC ( GT )

=> EM là đường trung bình của tam giác ABC 

=> EM // AB ( tính chất )

Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )

=> EM // CD hay MF // CD

+) Xet tam giác ACD có :

M là trung điểm của AC

MF // CD

=> F là trung điểm của AD ( điều phải chứng mình )

13 tháng 5 2019

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

13 tháng 5 2019

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

5:

a: ΔABC cân tại A

mà AH là trung tuyến

nên AH vuông góc BC

BH=CH=4cm

=>AH=căn 10^2-4^2=2*căn 21(cm)

b: Xét ΔIBH và ΔIAD có

góc IBH=góc IAD

IB=IA

góc BIH=góc AID

=>ΔIBH=ΔIAD

=>AD=BH=HC

 

15 tháng 9 2019

mng ơi huhu mình cần rất gấp