K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

5 tháng 9 2019

\(\frac{ }{\frac{ }{ }an}\) AN NC = AB BC ( tính chất của đừng phân gác) để tính AN mk lm thế có đúng ko

27 tháng 2 2019

Vì BM là đường phân giác của góc B nên ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: BM ⊥ BN

Suy ra tam giác BMN vuông tại B

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: A B 2  = AM.AN

Suy ra: AN = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 12 (cm)

17 tháng 6 2017

Áp dụng định lý Pitago cho ABH vuông tại A có:

Vì BM là tia phân giác trong của góc B ⇒ M A M C = A B B C  (Tính chất đường phân giác)

⇒ M A M C + M A = A B B C + A B ⇒ M A A C = A B B C + A B ⇒ M A 8 = 6 10 + 6 ⇒ MA = 3cm

Vì BM; BN là tia phân giác trong và ngoài của góc B ⇒ N B M ^ = 90 0

Áp dụng hệ thức lượng trong ABM vuông tại B có đường cao BA ta có:

Đáp án cần chọn là: D

2 tháng 8 2020

N B A M C

Vì BM là đường phân giác của góc B nên ta có :

\(\frac{MA}{MC}=\frac{AB}{BC}\Rightarrow\frac{MA}{MA+MC}=\frac{AB}{AB+AC}\)

\(\Rightarrow MA=\frac{AB.\left(MA+MC\right)}{AB+BC}=\frac{6.8}{6+10}=\frac{48}{16}=3\left(cm\right)\)

Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: \(BM\perp BN\)

Suy ra tam giác BMN vuông tại B

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: AB2 = AM . AN

Suy ra: \(AN=\frac{AB^2}{AM}=\frac{6^2}{3}=\frac{36}{3}=12\left(cm\right)\)

Tính được mỗi AM , AN nên thông cảm 😅

7 tháng 8 2023

Cách 1:
\(AC=\sqrt{BC^2-AB^2}=8\) cm

Từ D kẻ \(DH\perp BC\) tại H

Xét hai tam giác vuông DHB và DAB có:

\(\widehat{DBH}=\widehat{DBA}\) ( do BD là tia phân giác góc B)

BD chung

Nên \(\Delta DHB=\Delta DAB\left(ch-gn\right)\)

Suy ra \(HB=AB=6cm\Rightarrow HC=4cm\) và \(DH=DA\)

Áp dụng định lý pytago vào tam giác DHC vuông tại H có:

\(DC^2=4^2+DH^2\) \(\Leftrightarrow\left(AC-AD\right)^2=16+DA^2\) 

\(\Leftrightarrow\left(8-AD\right)^2=16+AD^2\)

\(\Leftrightarrow AD=3\) \(\Rightarrow BD=\sqrt{AD^2+AB^2}=3\sqrt{5}\) cm

Cách 2:

\(\dfrac{DC}{DA}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\)\(\Leftrightarrow\dfrac{DC}{5}=\dfrac{DA}{3}=\dfrac{DC+DA}{5+3}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow DC=5,DA=3\)

Làm tương tự như trên 

o. Tính BE

Có \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{EA}{EA+AC}=\dfrac{3}{5}\Leftrightarrow\dfrac{EA}{EA+8}=\dfrac{3}{5}\Leftrightarrow EA=12\)

\(BE=\sqrt{ED^2-BD^2}=\sqrt{\left(EA+AD\right)^2-BD^2}=6\sqrt{5}\) ( \(BE\perp BD\) do hai đường phân giác của hai góc kề bù)

Kết luận:...