Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ MP ⊥ EH (P Є EH), NQ ⊥ HF (Q Є HF) ta có:
MP và NQ lần lượt là đường trung bình của tam giác HBE và HFC
nên MP = 1 2 BE, NQ = 1 2 FC
S Δ M E H = 1 2 M P . E H = 1 2 . 1 2 B E . E H = 1 2 . S Δ H B E
S Δ H N F = 1 2 N Q . H F = 1 2 . 1 2 C F . H F = 1 2 S Δ H C F
S Δ H E F = 1 2 S Δ A E H F
=> SEMNF = 1 2 (SHBE + SHCF + SAEHF)
= SABC = 1 2 .AB. 1 2 AC = 1 4 .6.8 = 12 (cm2)
Đáp án cần chọn là: C
a, ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow\)\(BC^2=10^2\)\(\Rightarrow BC=10cm\)
b, ta có : SABC=\(\frac{1}{2}.AB.AC=\frac{1}{2}.BC.AH\)
\(\Rightarrow S_{ABC}=\frac{1}{2}.6.8=\frac{1}{2}.AH.10\)
\(\Rightarrow5.AH=24\Rightarrow AH=4,8cm\)
c,d đang giải
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay \(BC=\sqrt{100}=10cm\)
Xét ΔABC có AH là đường cao ứng với cạnh BC nên
\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay \(AH=\dfrac{48}{10}=4.8cm\)
Vậy: AH=4,8cm
b) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)
mà AH=4,8cm(cmt)
nên EF=4,8cm
Vậy: EF=4,8cm