Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)
\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:
a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)
\(=\cos150^o+\sin30^o+\tan60^o\)
\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)
\(=\frac{\sqrt{3}+1}{2}\)
b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)
\(=\sin90^o+\cos30^o+\cos0^o\)
\(=1+\frac{\sqrt{3}}{2}\)
\(=\frac{2+\sqrt{3}}{2}\)
Gọi M là trung điểm của BC
Xét ΔABC có AM là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)
\(\Leftrightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)
Lời giải:
\(|\overrightarrow{AB}|=BC\cos B=2.\cos 60^0=1\) (cm)
\(|\overrightarrow{AC}|=BC\sin B=2.\sin 60^0=\sqrt{3}\) (cm)
------------------
Do tam giác $ABC$ vuông tại $A$ nên $\overrightarrow{AB}\perp \overrightarrow{AC}\Rightarrow \overrightarrow{AB}.\overrightarrow{AC}=0$. Do đó:
\(|\overrightarrow{AB}+\overrightarrow{AC}|^2=(\overrightarrow{AB}+\overrightarrow{AC})^2=AB^2+AC^2+2\overrightarrow{AB}.\overrightarrow{AC}\)
\(=BC^2+0=BC^2=4\) (cm)
$\Rightarrow |\overrightarrow{AB}+\overrightarrow{AC}|=2$ (cm)
Tương tự:
\(|\overrightarrow{AB}-\overrightarrow{AC}|^2=AB^2+AC^2-2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2=BC^2=4\)
$\Rightarrow |\overrightarrow{AB}-\overrightarrow{AC}|=2$ (cm)
Lời giải:
\(|\overrightarrow{AB}|=BC\cos B=2.\cos 60^0=1\) (cm)
\(|\overrightarrow{AC}|=BC\sin B=2.\sin 60^0=\sqrt{3}\) (cm)
------------------
Do tam giác $ABC$ vuông tại $A$ nên $\overrightarrow{AB}\perp \overrightarrow{AC}\Rightarrow \overrightarrow{AB}.\overrightarrow{AC}=0$. Do đó:
\(|\overrightarrow{AB}+\overrightarrow{AC}|^2=(\overrightarrow{AB}+\overrightarrow{AC})^2=AB^2+AC^2+2\overrightarrow{AB}.\overrightarrow{AC}\)
\(=BC^2+0=BC^2=4\) (cm)
$\Rightarrow |\overrightarrow{AB}+\overrightarrow{AC}|=2$ (cm)
Tương tự:
\(|\overrightarrow{AB}-\overrightarrow{AC}|^2=AB^2+AC^2-2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2=BC^2=4\)
$\Rightarrow |\overrightarrow{AB}-\overrightarrow{AC}|=2$ (cm)
\(AB\perp AC\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
Đặt \(x=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\Rightarrow x^2=AB^2+AC^2-2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2=a^2+b^2\)
\(\Rightarrow x=\sqrt{a^2+b^2}\)
\(y=\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\Rightarrow y^2=AB^2+AC^2+2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2=a^2+b^2\)
\(\Rightarrow y=\sqrt{a^2+b^2}\)
Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}=-\overrightarrow{DC}\) ; \(\overrightarrow{AC}=-\overrightarrow{DB}\)
a/
\(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\Leftrightarrow\left|\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)
\(\Rightarrow\) Tập hợp M là trung trực của đoạn thẳng AD
b/ \(\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{AC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}\right|\)
Tập hợp M là trung trực đoạn CD
c/Dựng hình bình hành AEBC \(\Rightarrow\overrightarrow{EB}=-\overrightarrow{CA}\)
\(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BM}\right|\Leftrightarrow\left|\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{BC}\right|\)
Tập hợp M là đường tròn tâm E bán kính BC
A B C
a) \(\overrightarrow{AB}.\overrightarrow{AC}=0\) do \(AB\perp AC\).
b)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+a^2}=\sqrt{2}a\).
\(\overrightarrow{BA}.\overrightarrow{BC}=BA.BC.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)=a.\sqrt{2}a.cos45^o=a^2\).
c) \(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-a^2\).
Ta có I CA+AB I = I CB I =CB
Xét tam giác ABC ( A=90 ) áp dụng định lý pytago có
CB^2 = AB^2 + AC^2 = 9+16=25 => CB=5.
Vậy I CA+AB I= I CB I =5
Bạn lưu ý lần sau gõ lời giải bằng công thức toán (biểu tượng \(\sum\) góc trái khung soạn thảo) để được tick dễ dàng hơn khi làm đúng nhé.