Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C K E
a/ Xét tam giác AKB và tam giác AKC có:
AB = AC (GT)
BK = CK (GT)
AK: cạnh chung
=> tam giác AKB = tam giác AKC (c.c.c)
Ta có: tam giác AKB = tam giác AKC
=> góc AKB = góc AKC (2 góc tương ứng)
Mà góc AKB + góc AKC = 1800
=> góc AKB = góc AKC = 1800 : 2 = 900
Vậy AK vuông góc BC (đpcm)
b/ Ta có: \(\begin{cases}AK\perp BC\\EC\perp BC\end{cases}\)=> EC // AK (đpcm)
c/ Ta có: AC: chung (1)
Ta có: góc BAC + góc CAE = 1800
hay 900 + CAE = 1800
=> góc CAE = 900
=> góc BAC = góc CAE (2)
Trong tam giác vuông cân ABC có:
góc ABC + góc ACB = 900
Vì tam giác ABC cân nên góc ABC = góc ACB
=> góc ABC = góc ACB = 900:2 = 450
Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)
hay 450 + góc ACE = 900
=> góc ACE = 450
Vậy góc ACB = góc ACE = 450 (3)
Từ (1),(2),(3) => tam giác ACB = tam giác ACE
=> CE = CB (2 cạnh tương ứng) (đpcm)
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB
a) Xét tam giác AKB và tam giác AKC , có AB=AC (GT) BK là cạnh chung KB=KC ( K là trung điểm của BC) Do vậy tam giác AKB = tam giác AKC (c.c.c) b) Có tam giác AKB = AKC (cmt)
=> ˆAKB=ˆAKC⇒AKB^=AKC^. Mà ˆAKB+ˆAKC=ˆBKC=1800AKB^+AKC^=BKC^=1800. Do đó:
ˆAKB=ˆAKC=900⇒AK⊥BCAKB^=AKC^=90⇒AK⊥BC
Ta thấy: EC⊥BC ; AK⊥BC (cmt)
⇒EC∥AK⇒EC∥AK ()
c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=45
Tam giác CBE vuông tại C có ˆB=45 ⇒ˆE=1800−(ˆC+ˆB)=180−(90+45)=45
⇒ˆE = ˆB⇒E^=B^ nên tam giác CBE cân tại C. Do đó CE=CB
a,xét tam giác ABK và tam giác ACK có: AB=AC(GT) AK chung BK=CK CẢ 3 ĐIỀU TRÊN SUY RA TAM GIÁC ABK=TAM GIÁC ACK (C.C.C) SUY RA GÓC AKB=GÓC AKC (CẶP GÓC TƯƠNG ỨNG).MẶT KHÁC GÓC AKB+GÓC AKC=18O ĐỘ .SUY RA AKB=AKB=180:2=9O ĐỘ SUY RA AK VUÔNG GÓC VS BC
cho tam giác ABC cân tại A.trên AB lấy M trên AC lấy N sao cho BM=CN.kẻ MD và NE vuông góc vs BC.CM a,BD=CE b,ID=IE
A B C K \
a) \(\Delta AKB\)và \(\Delta AKC\)có:
AB = AC (theo GT)
BK = CK (vì K là trung điểm của BC)
AK: cạnh chung
Do đó: \(\Delta AKB=\Delta AKC\)(c.c.c)
Suy ra: \(\widehat{AKB}=\widehat{AKC}\)(cặp góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)
Nên \(\widehat{AKB}=\frac{180^o}{2}=90^o\)
Vậy \(AK\perp BC\)
A B C E K
a) Tam giác AKB = AKC
b) EC//AK
c) CE = CB
a) Xét \(\Delta AKB\)và \(\Delta AKC\text{ có : }\hept{\begin{cases}AB=AC\\KB=KC\\AK\text{ chung}\end{cases}\left(c.c.c\right)\Rightarrow\Delta AKB=\Delta AKC}\)
\(\Rightarrow\widehat{B}=C\text{ và }\widehat{ BAK}=\widehat{CAK}=\frac{1}{2}\widehat{A}=45^{\text{O}}\left(\text{góc tương ứng}\right)\)mà \(\widehat{B}+\widehat{C}=90^{\text{O}}\left(\widehat{A}=90^{\text{O}}\right)\Rightarrow\widehat{B}=\widehat{C}=45^{\text{O}}\)
=> \(\widehat{BKA}=180^{\text{O}}-\widehat{B}-\widehat{BAK}=90^{\text{O}}\)
=> AK vuông góc với BC
b) Vì góc C vuông
=> Góc B + Góc E = Góc C
=> Góc B + Góc E = 90O
=> Góc E = 45O
Vì góc BAC là góc ngoài của tam giác ACE
=> Góc ACE + Góc E = 90O (vì góc BAC = 90o)
=> Góc ACE = 45o
mà Góc KAC = Góc ACE ( = 45o) và cùng so le trong
=> AK // CE