Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
hình như trên
+)Ta có: ΔDMB=ΔENCΔDMB=ΔENC ( g-c-g) ( Vì ˆMBD=ˆNCEMBD^=NCE^ cùng bằng ˆACBACB^)
Nên MD = NE.
+)Xét ΔDMIΔDMI và ΔENIΔENI: ˆD=ˆE=900,MD=NE(cmt)D^=E^=900,MD=NE(cmt)
ˆMID=ˆNIEMID^=NIE^( Hai góc đối đỉnh)
Nên ΔDMI=ΔENIΔDMI=ΔENI( cgv - gn)
⇒MI=NI⇒MI=NI
+)Từ B và C kẻ các đường thẳng lần lượt vuông
Góc với AB và AC cắt nhau tại J.
Ta có: ΔABJ=ΔACJ(g−c−g)⇒JB=JCΔABJ=ΔACJ(g−c−g)⇒JB=JC
Nên J thuộc AL đường trung trực ứng với BC
Mặt khác : Từ ΔDMB=ΔENCΔDMB=ΔENC( Câu a)
Ta có : BM = CN
BJ = CJ ( cm trên)
ˆMBJ=ˆNCJ=900MBJ^=NCJ^=900
Nên ΔBMJ=ΔCNJΔBMJ=ΔCNJ ( c-g-c)
⇒MJ=NJ⇒MJ=NJ hay đường trung trực của MN
Luôn đi qua điểm J cố định.
a: BC=13cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔNHA và ΔNIC có
NH=NI
\(\widehat{HNA}=\widehat{INC}\)
NA=NC
Do đó: ΔNHA=ΔNIC
a) Vì tam giác ABC vuông tại A(gt)
=)Â=90 độ
=)tam giác BAD là tam giác vuông tại A
Vì DE vuông góc vs BC (gt)
=)Ê =90 độ
=)tam giác BED là tam giác vuông tại E
xét tam giác BAD vuông tại A và tam giác BED vuông tại E có
Góc ABD =Góc EBD(vì BD là tia phân giác)
BD là cạnh chung
=) tam giác BAD=tam giác BED(ch-cgv)
Xét 2 tam giác vuông ABD và EBD có
Góc ABD=góc EBD(gt)
Cạnh huyền BD chung
=)) tam giác ABD=tam giácEBD (ch-gn)
a) Thấy 52=32+42 hay BC2=AB2+AC2
\(\Rightarrow\Delta ABC\) vuông tại A
b)Hình thì chắc bạn tự vẽ được nha
Xét 2\(\Delta ABH\) và\(\Delta DBH\) có:
AB=DB
\(\widehat{BAH}=\widehat{BDH}\)
BH chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)
\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)
c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị
a) Ta có :
-BC2=52=25(1)
-AB2+AC2=32+42=25(2)
-Từ (1)và(2)suy ra BC2=AB2+AC2
-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)
-vậy tam giác ABC là tam giác vuông .
b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có
-BH là cạnh huyền chung
-AB=BD(gt)
-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)
Vậy BH là tia phân giác của góc ABC
C/m 3 điểm thẳng hàng là tìm trọng tâm của tam giác đóa pạn, có trọng tâm ròi =>D,M.F thẳng hàng
tks