Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ + Áp dụng hệ thức giữa cạnh và hình chiếu trong ΔΔABC vuông tại A có: AB2 = BC . BH => BH = AB2 : BC Hay BH = 92 : 15 => BH = 5,4 cm + Xét ΔΔABC vuông tại A có : HC = BC - BH Hay HC = 15 - 5,4 = 9,6 => HC = 9,6 cm + Áp dụng hệ thức liên quan đến đường cao trong ΔΔABC vuông tại A có : AH2 = BH . HC Hay AH2 = 5,4 . 9,6 AH2 = 51,84 => AH = √51,8451,84 = 7,2 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH\cdot15=9\cdot12=108\)
hay AH=7,2(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=12^2-7.2^2=92.16\)
hay CH=9,6(cm)
Vậy: AH=7,2cm; CH=9,6cm
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)
a: BC=BH+CH
=4+9
=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>\(AH=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(AB^2=4\cdot13=52\)
=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
b:
CK//AB
CA\(\perp\)AB
Do đó: CK\(\perp\)CA tại C
Xét ΔACK vuông tại C có CH là đường cao
nên \(HA\cdot HK=CH^2\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot HB=HA^2\)
Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)
=>\(AC^2=HA\cdot HK+CH\cdot HB\)
c: Gọi M là trung điểm của BC
Ta có: ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
=>ΔABC nội tiếp (M)
Xét tứ giác BAEF có
\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)
Do đó: BAEF là tứ giác nội tiếp
=>\(\widehat{BAF}=\widehat{BEF}\)(1)
Ta có: AH\(\perp\)BC
EF\(\perp\)BC
Do đó: AH//EF
=>AD//EF
=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)
mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{BAF}=\widehat{ACB}\)
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
=>\(\widehat{MAB}=\widehat{ABC}\)
Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>MA\(\perp\)FA tại A
Xét (M) có
MA là bán kính
FA\(\perp\)MA tại A
Do đó: FA là tiếp tuyến của (M)
hay FA là tiếp tuyến của đường tròn đường kính BC
Mình cần gấp lắm làm ơn!