K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

21 tháng 2 2021

a/ + Áp dụng hệ thức giữa cạnh và hình chiếu trong ΔΔABC vuông tại A có: AB2 = BC . BH => BH = AB2 : BC Hay BH = 92 : 15 => BH = 5,4 cm + Xét ΔΔABC vuông tại A có : HC = BC - BH Hay HC = 15 - 5,4 = 9,6 => HC = 9,6 cm + Áp dụng hệ thức liên quan đến đường cao trong ΔΔABC vuông tại A có : AH2 = BH . HC Hay AH2 = 5,4 . 9,6 AH2 = 51,84 => AH = √51,8451,84 = 7,2 cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=12^2-7.2^2=92.16\)

hay CH=9,6(cm)

Vậy: AH=7,2cm; CH=9,6cm

20 tháng 10 2017

mn giúp em làm ý e vs ạ,thanks mn nhiều ^^

10 tháng 9 2020

a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)

\(C=90^0-B\approx37^0\)

Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)

Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)

b) Vì AD là phân giác tại A của tam giác ABC nên:

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)

Mà \(BD+CD=BC=15\)

\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)

a: BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>\(AH=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AB^2=4\cdot13=52\)

=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

b:

CK//AB

CA\(\perp\)AB

Do đó: CK\(\perp\)CA tại C

Xét ΔACK vuông tại C có CH là đường cao

nên \(HA\cdot HK=CH^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot HB=HA^2\)

Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)

=>\(AC^2=HA\cdot HK+CH\cdot HB\)

c: Gọi M là trung điểm của BC

Ta có: ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

=>ΔABC nội tiếp (M)

Xét tứ giác BAEF có

\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)

Do đó: BAEF là tứ giác nội tiếp

=>\(\widehat{BAF}=\widehat{BEF}\)(1)

Ta có: AH\(\perp\)BC

EF\(\perp\)BC

Do đó: AH//EF

=>AD//EF

=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)

Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)

mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{BAF}=\widehat{ACB}\)

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

=>\(\widehat{MAB}=\widehat{ABC}\)

Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>MA\(\perp\)FA tại A

Xét (M) có

MA là bán kính
FA\(\perp\)MA tại A

Do đó: FA là tiếp tuyến của (M)

hay FA là tiếp tuyến của đường tròn đường kính BC