K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

a)  Xét \(\Delta ABC\) và      \(\Delta HBA\)  có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}\)   chung

suy ra:   \(\Delta ABC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Rightarrow\)\(AB^2=HB.BC\)

\(\Leftrightarrow\)\(6^2=HB.10\)

\(\Rightarrow\)\(HB=3,6\)

4 tháng 4 2018

bn ơi mk cần câu c cơ

10 tháng 2 2018

kho ua

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

3: Xét ΔBAC có BK là đường phân giác

nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)

mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)

Xét ΔAHC vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\)

Do đó: ΔAHC\(\sim\)ΔBHA

Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)

=>BH/AH=AB/AC

hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)

hay \(AK\cdot AC=AH\cdot KC\)

5 tháng 5 2023

Em xem lại ghi đề đã chính xác chưa nhé!

5 tháng 5 2023

 

à tia phân giác ad của g0c HAC (D thu0c BC)

5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

9 tháng 5 2017

a, Xét tg HBA và tgABC:

Có: góc B chung

H=A=90

=> tg HBA đồng dạng ABC (gg)

b, Vì tg BHA đồng dạng tg ABC:

=>AB/HB=BC/AB

=>đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC=BI/IC=>BI/AB=IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7

Suy ra: BI=5/7.6=4,3

IC=5/7.8=5,7

Nhớ k nha.

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm