Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét△HBA và △ABC có:
góc BAH= góc BHA (=90 độ)
góc B chung
⇒△HBA∼△ABC (g.g)
b) áp dụng định lí pytago vào △ABC vuông tại A
AB2+AC2=BC2
⇔162+122=BC2
⇔256+144=BC2
⇔√400=20=BC(cm)
vậy BC= 20 cm
vì△HBA∼△ABC(cmt)
ta có tỉ lệ
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)
⇒\(AH=\dfrac{12\cdot16}{20}=\dfrac{48}{5}=9.6\left(cm\right)\)
⇒AH = 9,6 cm
áp dụng tính chất đường phân giácAD trong tam giác
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)⇒\(\dfrac{12}{16}=\dfrac{BD}{DC}\)⇒\(\dfrac{DC}{16}=\dfrac{BD}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{16}=\dfrac{BD}{12}=\dfrac{DC+BD}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)
\(\dfrac{BD}{12}=\dfrac{5}{7}\)⇒\(BD=\dfrac{60}{7}\left(cm\right)\)
c) \(DC=BC-BD=20-\dfrac{60}{7}=\dfrac{80}{7}\)
hs tự làm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHAB đồng dạng với ΔACB
b: BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
c: BC=căn 12^2+16^2=20cm
BD/3=CD/4=20/7
=>BD=60/7cm
AH=12*16/20=9,6cm
A B C H
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) là góc chung, \(\widehat{AHB}=\widehat{BAC}=90^o\)
=> \(\Delta HBA~\Delta ABC\) (g.g) (1)
b) Xét \(\Delta HAC\) và \(\Delta ABC\) có:
\(\widehat{C}\) là góc chung, \(\widehat{AHC}=\widehat{BAC}=90^o\)
=> \(\Delta HAC~\Delta ABC\) (g.g) (2)
Từ (1) và (2) suy ra \(\Delta HBA~\Delta HAC\)
=> \(\frac{S_{\Delta HBA}}{S_{\Delta HAC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{12}{16}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
Xét hai tam giác ABC và tam giác HBA có
A = H = 90
B là góc chung
=> tam guacs ABC đồng dạng với tam giác HBA (g _ g) (1)
Xét hai tam giác ABC và tam giác HCA có
A= H = 90
C là góc chung
=> tam giác ABC ~ tam giác HAC ( g_ g) (2)
(1) =>\(\frac{AB}{BC}=\frac{BH}{BA}\)=> AB.AB = BH.BC => \(AB^2\)\(=BH.BC\)
(2) => \(\frac{AC}{BC}=\frac{CH}{AC}=AC.AC=BC.CH=AC^2=BC.CH\)
b ) Áp dụng định lý Py - ta - go vào tam giác ABC
\(BC^2=AC^2+AB^2\)= \(16^2+12^2\)= 400
=> BC = \(\sqrt{400}=20\)
từ tam giác ABC ~ HBA =>\(\frac{AB}{BH}=\frac{BC}{BA}< =>\frac{12}{BH}=\frac{20}{12}=>BH=\frac{12.12}{20}=7,2\)
từ tam giác ABC ~ HAC => \(\frac{AB}{HA}=\frac{BC}{AC}< =>\frac{12}{HC}=\frac{20}{16}=>HC=\frac{12.16}{20}=9,6\)
Áp dụng định lý Py - ta - go vào tam giác HBA
\(AH^2=AB^2-HB^2=12^2-7,2^2=9,6\)
1, a, Áp dụng định lý Pi-ta-go vào ΔΔ vuông ABCABC có:
AB2+AC2=BC2⇔BC=20AB2+AC2=BC2⇔BC=20 (cm)
Do AD là phần giác ˆAA^ theo tính chất đường phân giác ta có:
BDCD=ABAC=1216=34BDCD=ABAC=12/16=3/4
⇒BD/BD+CD=3/3+4⇒BD/BC=3/7⇒BD/BD+CD=3/3+4⇒BD/BC=3/7
⇒BD=3/7BC=60/7⇒BD=3/7BC=6/07
⇒DC=BC−BD=807⇒DC=BC−BD=807
b, AH là đường cao ΔΔ vuông ABC nên:
SΔABC=AH.BC/2=AB.AC2SΔABC=AH.BC2=AB.AC/2
⇒AH=AB.C/BC=48/5⇒AH=AB.C/BC=48/5 (cm)
Ta có:
BH2=AB2−AH2⇒BH=365BH2=AB2−AH2⇒BH=365 (cm)
⇒DH=BD=BH=4835⇒DH=BD=BH=4835 (cm)
AD2=DH2+AH2⇒AD=48√2/7AD2=DH2+AH2⇒AD=4827 (cm)
Bài 2, a,
Xét hai ΔABMΔABM và ΔACNΔACN có:
ˆAA^ chung
AB=ACAB=AC
ˆABM=ˆACNABM^=ACN^ (=12ˆB=12ˆC)(=12B^=12C^)
⇒ΔABM=ΔACN⇒ΔABM=ΔACN (g.c.g)
⇒AM=AN⇒AM=AN (hai cạnh tương ứng)
Ta có: AM=AN và AB=AC ⇒ANAB=AMAC⇒MN//BC⇒ANAB=AMAC⇒MN//BC (Ta-lét đảo)
b, Do BM là phân giác ˆBB^ theo tính chất đường phân giác ta có:
AM/MC=AB/BC=5/6AM/MC=AB/BC=5/6
⇒AM/AM+MC=5/5+6⇒AM/AC=5/11⇒AM/AM+MC=55+6⇒AM/AC=511
⇒AM=5/11AC=25/11⇒AM=5/11AC=25/11 (cm)
⇒MC=AC−AM=30/11⇒MC=AC−AM=30/11 (cm)
MN//BC⇒MN/BC=AM/AC=5/11MN//BC⇒MNBC=AMAC=5/11
⇒MN=5/11BC=3011⇒MN=51/1BC=30/11 (cm).
a) Xét ΔHBAΔHBA và ΔABCΔABC có:
ˆAHB=ˆCAB=90∘AHB^=CAB^=90∘
ˆBB^ là góc chung
⇒ΔHBA∼ΔABC⇒ΔHBA∼ΔABC (g-g)
c) ΔABCΔABC có ADAD là đường phân giác, theo tính chất đường phân giác ta có:
⇒ABAC=DBDC=1216=34⇒ABAC=DBDC=1216=34
SΔABD=12⋅AH⋅BDSΔABD=12·AH·BD
SΔACD=12⋅AH⋅DCSΔACD=12·AH·DC
⇒SΔABDSΔACD=BDDC=34⇒SΔABDSΔACD=BDDC=34
câu c là câu b nha mình ghi nhầm