Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a: BC=căn 3^2+4^2=5cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>AK=HC
Xét ΔAKH và ΔHCA có
AK=HC
KH=CA
AH chung
=>ΔAKH=ΔHCA
=>góc AKH=góc HCA
mà góc HCA<góc ABC
nên góc AKH<góc ABH
a.Áp dụng định lý pitago vào tam giác ABC vuông tại A, có:
\(BC^2=AB^2+AC^2\)
\(BC^2=4^2+3^2\)
\(BC^2=25\)
\(BC=\sqrt{25}=5\left(cm\right)\)
b.Ta có: \(BC>AB>AC\)
\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)
a) ...pitago vào tam giác abc vuông tại a
bc^2= ac^2+ab^2
bc^2= 25
bc=5cm
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều
Áp dụng đính lý Pitago:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow4^2=3^2+AC^2\)
\(\Leftrightarrow AC^2=7\)
\(\Rightarrow AC=\sqrt{7}\) (cm)
Áp dụng định lí Pytago vào ΔBCA vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=4^2-3^2=7\)
hay \(AC=\sqrt{7}\left(cm\right)\)