Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Δ ABC vuông tại A?
Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)
=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)
=> \(AB=4k\)
Từ đây ta có thể dễ dàng tính được:
\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)
\(sin^2b+cos^2b=1\)
\(\left(\frac{3}{5}\right)^2+cos^2b=1\)
\(\frac{9}{25}+cos^2b=1\)
\(cos^2b=\frac{16}{25}\)
\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)
\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)
\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)
neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink
a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)
\(\Rightarrow\Delta ABC\)vuông tại C
b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)
\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)
\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)
\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\)
A B C
a) Vì \(\widehat{B}=\alpha\); \(\tan\alpha=\frac{5}{12}\)
\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)
mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)
\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)
Vậy \(AC=\frac{10}{3}\)
b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)
\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)
Vậy \(BC=\frac{26}{3}\)
Vẽ phân giác BD, ta có: \(\frac{DA}{DC}=\frac{BA}{BC}\)
\(\Rightarrow\frac{DA}{AB}=\frac{DC}{BC}=\frac{DA+DC}{AB+BC}=\frac{AC}{AB+BC}\left(1\right)\)
Mặt khác \(\Delta ABD\)vuông tại A, ta có:
\(\tan\widehat{ABD}=\tan\frac{\widehat{ABC}}{2}=\frac{DA}{AB}\left(2\right)\)
Từ (1) và (2) =>đpcm
Lời giải:
Vì góc $\widehat{B}$ nhọn nên $\cos B>0$
Ta có:
$\cos ^2B=1-\sin ^2B=1-(\frac{3}{5})^2=\frac{16}{25}$
$\Rightarrow \cos B=\frac{4}{5}$
$\tan B=\frac{\sin B}{\cos B}=\frac{4}{5}: \frac{3}{5}=\frac{4}{3}$
$\cot B=\frac{1}{\tan B}=\frac{3}{4}$
\(cosB=\sqrt{1-sin^2B}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}\)
\(tanB=\frac{sinB}{cosB}=\frac{3}{4}\)
\(cotB=\frac{1}{tanB}=\frac{4}{3}\)