K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

Vì góc $\widehat{B}$ nhọn nên $\cos B>0$

Ta có:

$\cos ^2B=1-\sin ^2B=1-(\frac{3}{5})^2=\frac{16}{25}$

$\Rightarrow \cos B=\frac{4}{5}$

$\tan B=\frac{\sin B}{\cos B}=\frac{4}{5}: \frac{3}{5}=\frac{4}{3}$

$\cot B=\frac{1}{\tan B}=\frac{3}{4}$

NV
30 tháng 8 2020

\(cosB=\sqrt{1-sin^2B}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}\)

\(tanB=\frac{sinB}{cosB}=\frac{3}{4}\)

\(cotB=\frac{1}{tanB}=\frac{4}{3}\)

30 tháng 8 2020

Bài làm:

Δ ABC vuông tại A?

Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)

=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)

=> \(AB=4k\)

Từ đây ta có thể dễ dàng tính được:

\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)

30 tháng 8 2020

\(sin^2b+cos^2b=1\)      

\(\left(\frac{3}{5}\right)^2+cos^2b=1\)        

\(\frac{9}{25}+cos^2b=1\)     

\(cos^2b=\frac{16}{25}\)                      

\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)       

\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)     

\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)

11 tháng 7 2018

neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink

12 tháng 7 2017

a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)

\(\Rightarrow\Delta ABC\)vuông tại C

b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)

\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)

\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\) 

12 tháng 7 2017

Thanks bạn nhìu

10 tháng 9 2020

                                       A B C

a) Vì \(\widehat{B}=\alpha\)\(\tan\alpha=\frac{5}{12}\)

\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)

mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)

\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)

Vậy \(AC=\frac{10}{3}\)

b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)

\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)

Vậy \(BC=\frac{26}{3}\)

23 tháng 9 2020

Vẽ phân giác BD, ta có: \(\frac{DA}{DC}=\frac{BA}{BC}\)

\(\Rightarrow\frac{DA}{AB}=\frac{DC}{BC}=\frac{DA+DC}{AB+BC}=\frac{AC}{AB+BC}\left(1\right)\)

Mặt khác \(\Delta ABD\)vuông tại A, ta có:

\(\tan\widehat{ABD}=\tan\frac{\widehat{ABC}}{2}=\frac{DA}{AB}\left(2\right)\)

Từ (1) và (2) =>đpcm