Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, theo pytago\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)
theo hệ thức lượng
\(=>AM.BC=AB.AC=>AM=\dfrac{12.16}{20}=9,6cm\)
theo ct lượng giác\(=>\sin C=\dfrac{AM}{AC}=\dfrac{9,6}{16}=>\angle\left(C\right)\approx36^o52'=>\angle\left(B\right)=53^08'\)
b, AM ý a, tính rồi,
theo hệ thức lượng \(=>AB^2=BM.BC=>BM=\dfrac{12^2}{20}=7,2cm\)
c,theo hệ thứ lượng \(=>AE.AB=AM^2\left(1\right)\)
pytago\(AC^2-MC^2=AM^2\left(2\right)\)
(1)(2)=>đpcm
a, Vì \(BC^2=400=256+144=AC^2+AB^2\) nên tam giác ABC vuông tại A
b, Áp dụng HTL: \(AM=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\)
\(BM=\dfrac{AB^2}{BC}=7,2 \left(cm\right)\)
c, Áp dụng HTL: \(AE\cdot AB=AM^2\)
Áp dụng PTG: \(AM^2=AC^2-MC^2\)
Vậy \(AE\cdot AB=AC^2-MC^2\)
d, Áp dụng HTL: \(AE\cdot AB=MB\cdot MC=AM^2\)
\(\left\{{}\begin{matrix}\widehat{EAM}=\widehat{ACM}\left(cùng.phụ.\widehat{MAC}\right)\\\widehat{AEM}=\widehat{AMC}=90^0\end{matrix}\right.\Rightarrow\Delta AEM\sim\Delta CMA\left(g.g\right)\\ \Rightarrow EM\cdot AC=AM^2\)
Vậy ta được đpcm
b: \(AN\cdot AC=AH^2\)
\(AC^2-HC^2=AH^2\)
Do đó: \(AN\cdot AC=AC^2-HC^2\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AM là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AM\cdot BC=AB\cdot AC\\AB^2=BM\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9.6\left(cm\right)\\BM=7.2\left(cm\right)\end{matrix}\right.\)
b: Xét ΔMAB vuông tại M và ΔABE vuông tại A có
\(\widehat{MAB}=\widehat{ABE}\)
Do đó: ΔMAB\(\sim\)ΔABE
b: Xét ΔMAB vuông tại M và ΔABE vuông tại A có
\(\widehat{MAB}=\widehat{ABE}\)
Do đó: ΔMAB∼ΔABE
a: BC=căn 12^2+16^2=20cm
Xét ΔABC vuông tại A có sin C=AB/BC=3/5
=>góc C=37 độ
=>góc B=53 độ
b: AM=12*16/20=9,6cm
BM=AB^2/BC=7,2cm
c: ΔAMB vuông tại M có ME là đường cao
nên AE*AB=AM^2
=>AE*AB=AC^2-MC^2
Dạ tính kiểu j ra góc c vs góc b ý ạ, chỉ với