K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}=90^0\)

=>DE\(\perp\)DB tại D

=>DE\(\perp\)BC tại D

b:

ΔBAE=ΔBDE

=>EA=ED

Xét ΔEAF vuông tại A và ΔEDC vuông tại E có

EA=ED

\(\widehat{AEF}=\widehat{DEC}\)

Do đó: ΔEAF=ΔEDC

=>AF=DC

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BD}{DC}\)

nên AD//CF

24 tháng 5 2019

sdfgbnerfghjrtyuiocfvbnm

24 tháng 5 2019

A B C D E F

a) Xét t/giác ABE và t/giác DBE

có AB = BD (gt)

 góc BAE = góc BDE = 900 (gt)

  BE : chung

=> t/giác ABE = t/giác DBE (ch - cgv)

b) Ta có: t/giác ABE = t/giác DBE (cmt)

=> góc ABE = góc DBE (hai góc tương ứng)

=> BE là tia p/giác của góc ABD

hay BE là tia p/giác của góc ABC

c) Xét t/giác AEF và t/giác DEC

có góc FAE = góc CDE = 900 (gt)

    AE = ED (Vì t/giác ABE = t/giác DBE)

  góc AEF = góc DEC (đối đỉnh)

=> t/giác AEF = t/giác DEC (g.c.g)

=> EF  = CF (hai cạnh tương ứng)

=> t/giác CEF là t/giác cân

d) Ta có: t/giác AEF = t/giác DEC (cmt)

=> AF = DC (hai cạnh tương ứng)

Mà AB + AF= BF

  BD + DC = BC

Và AB = BD (gt)

=> BF = BC 

=> t/giác BFC cân tại B

=> góc F = góc C = (1800 - góc B)/2 (1)

Ta lại có AB = BD (gt)

=> t/giác ABD cân tại B

=> góc BAD = góc BDA = (1800 - góc B)/2 (2)

Từ (1) và (2) suy ra góc BAD = góc F

mà góc BAD và góc F ở vị trí đồng vị

=> AD // CF (Đpcm)

31 tháng 3 2017

hình tự vẽ: 

xét hai tam giác vuông ABE và DBE:

ab=ad(gt); be là cạnh huyền chung 

=>\(\Delta\) ABE = \(\Delta\)DBE

mình sẽ giải tiếp

31 tháng 3 2017

a) theo đinh j lý pitago : tam giác abc vuông tại A 

=> \(AB^2+AC^2=BC^2\)THAY SỐ TA ĐƯỢC \(5^2+7^2=BC^2\) TA ĐƯỢC \(74=BC^2\) =>BC = 

8.6023

28 tháng 12 2021

Bài 1: 

a: Xét ΔABE và ΔDBE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

1 tháng 5 2018

a, xét tam giác ABC theo định lý py _ta _go ta có :

\(^{BC^2=AC^2+AB^2}\)

\(BC^2=5^2+7^2\)

\(^{BC^2=25+49}\)

\(^{BC^2=74}\)

BC=\(\sqrt{74}\)

b,xét tam giác vuông ABE và tam giác vuông DBE ta có:

BA=DB(gt)

BE chung

=}tam giác ABE=tam giác DBE(ch_cgv)

=}EA=ED (2 cạnh tương ứng)

c,xét tam giác vuông AEF và tam giác vuông  DEC ta có:

AE=ED(cm câu b)

E1=E2 (đối đỉnh)

=}tam giác AEF và tam giác DEC (gn_cgv)

=}EF=EC (2 cạnh tương ứng)

d,Ta có :BA =DA (gt)

           AE=ED(cm câu a)

=}BE là đường trung trực của AD

MÌNH TỰ LÀM KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG BẠN Ạ

1 tháng 5 2018

a) Xét tam giác ABC vuông tại A

có: \(AB^2+AC^2=BC^2\) ( py -  ta - go )

thay số: \(5^2+7^2=BC^2\)

\(BC^2=74\)

\(\Rightarrow BC=\sqrt{74}\)cm

b) Xét tam giác ABE vuông tại A và tam giác DBE vuông tại D

có: AB = DB ( gt)

AE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)

c) ta có: tam giác ABE = tam giác DBE ( phần b)

=> AE = DE ( 2 cạnh tương ứng)

Xét tam giác AEF vuông tại A và tam giác DEC vuông tại D

có: AE = DE ( cmt)

góc AEF = góc DEC ( đối đỉnh )

\(\Rightarrow\Delta AEF=\Delta DEC\left(cgv-gn\right)\)

=> EF = EC ( 2 cạnh tương ứng)

d) ta có: tam giác ABE = tam giác DBE ( phần b)

=> góc ABE = góc DBE ( 2 góc tương ứng )

Xét tam giác ABH và tam giác DBH

có: AB = DB ( gt)

góc ABE = góc DBE ( cmt)

BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta DBH\left(c-g-c\right)\)

=> AH = DH ( 2 cạnh tương ứng ) (1)

góc AHB = góc DHB ( 2 góc tương ứng )

mà góc AHB + góc DHB = 180 độ ( kề bù)

=> góc AHB + góc AHB = 180 độ

2. góc AHB = 180 độ

góc AHB = 180 độ :2

góc AHB = 90 độ

=> \(\Rightarrow BE\perp AD⋮H\) ( định lí vuông góc) (2)

Từ (1) ; (2) => BE là đường trung trực của AD ( định lí đường trung trực)
 

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

31 tháng 7 2015

a) Xét tam giác ABD và EBD có:

- AB=BE (gt)

- góc ABD = góc EBD ( BD là phân giác góc B)

- Chung cạnh BD

=> Tam giác ABD = tam giác EBD (c.g.c)

=> DA = DE ( 2 cạnh tương ứng)