K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

`Answer:`

undefined

a. Xét `\triangleABE` và `triangleBEI:`

`BE` chung

`\hat{ABE}=\hat{EBI}`

`\hat{BAE}=\hat{EIB}=90^o`

`=>\triangleABE=\triangleIBE(ch-gn)`

`=>AE=IE`

b. Ta có: `A,I,C,M` cùng thuộc đường tròn trên đường kính `MC`

Mà `\hat{AMC}=\hat{MIC}=90^o`

`=>\hat{AMI}=\hat{ACI}`

Xét `\triangleBME` và `\triangleBCE:`

`BE` chung

`\hat{AMI}=\hat{ACI}`

`\hat{MBE}=\hat{CBE}`

`=>\triangleBME=\triangleBCE(g.c.g)`

`=>EM=EC`

`=>\triangleEMC` cân ở `E`

c. Ta có: `A,I,C,M` thuộc đường tròn đường kính `MC`

`=>\hat{AIM}=\hat{ACM}`

Mà theo phần b. `\hat{EMC}` cân nên `\hat{IMC}=\hat{ACM}`

`=>\hat{AIM}=\hat{IMC}` (So le trong)

`\(\Rightarrow AI//MC\)

22 tháng 2 2020

a, Xét △ABE vuông tại A và △IBE vuông tại I

Có: EB là cạnh chung

       IBE = ABE (gt)

=> △ABE = △IBE (ch-gn)

b, Xét △ICE vuông tại I và △AME vuông tại A

Có: IE = AE (△IBE = △ABE)

    IEC = AEM (2 góc đối đỉnh)

=> △ICE = △AME (cgv-gn)

=> CE = ME (2 cạnh tương ứng)

=> △CEM cân tại E

c, Xét △IBA có: AB = IB (△ABE = △IBE)  => △IBA cân tại B => BIA = (180o - IBA) : 2      (1)

Ta có: BC = IB + IC và BM = AB + AM

Mà IB = AB (cmt) ; IC = AM (△ICE = △AME) 

=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2    (2)

Từ (1), (2) => BIA = BCM 

Mà 2 góc này nằm ở vị trí đồng vị

=> AI // MC (dhnb)

a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó: ΔBAE=ΔBIE

b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEM}=\widehat{IEC}\)

Do đó: ΔAEM=ΔIEC

Suy ra: EM=EC

hay ΔEMC cân tại M

c: Xét ΔBMC có 

BA/AM=BI/IC

nên AI//MC

a, Xét △ABE vuông tại A và △IBE vuông tại I

Có: EB là cạnh chung

       IBE = ABE (gt)

=> △ABE = △IBE (ch-gn)

b, Xét △ICE vuông tại I và △AME vuông tại A

Có: IE = AE (△IBE = △ABE)

    IEC = AEM (2 góc đối đỉnh)

=> △ICE = △AME (cgv-gn)

=> CE = ME (2 cạnh tương ứng)

=> △CEM cân tại E

c, Xét △IBA có: AB = IB (△ABE = △IBE)  => △IBA cân tại B => BIA = (180o - IBA) : 2      (1)

Ta có: BC = IB + IC và BM = AB + AM

Mà IB = AB (cmt) ; IC = AM (△ICE = △AME) 

=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2    (2)

Từ (1), (2) => BIA = BCM 

Mà 2 góc này nằm ở vị trí đồng vị

=> AI // MC (dhnb)

a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó:ΔABE=ΔIBE

b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEM}=\widehat{IEC}\)

Do đó;ΔAEM=ΔIEC

Suy ra: EM=EC

hay ΔEMC cân tại E

c: Xét ΔBMC có BA/AM=BI/IC

nên AI//MC

4 tháng 3 2022

chúc mừng cj lên đc đại tướng

27 tháng 3 2020

Bạn tự vẽ hình nha.

a,Xét tg ABE và tg HBE:

^BAE=^BHE=90*

^ABE=^HBE(BE là pg)

BE chung

=>tg ABE= tg HBE(ch-gn)

b,+,tg ABC có:^BAC=90*,^ABC=60*

=>^C=30*

+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)

=>^HEB=60*

Mà HK // BE

=>^HBE=^EHK=60*(slt)

+, tg CHE có:^EHC=90*,^C=30*

=>HEC=60*

+,tg HEK có:

^EHK=60*,^HEC(^HEK)=60*

=>TG HEK đều(dhnb)

Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.

c, +,CM:tg AEM=tg HEC(cgv-gnk)

=>AM=HC

+,CM:BM=BC

+,CM:tg BMI=tgBCI(cgc)

=>NM=NC

Xong r nha. Chúc bạn học tốt.

9 tháng 5 2022

bn ơi đúng câu khó mik ko bik lại nói thế

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại Ea) chứng minh AB=EBb) chứng minh tam giác BED vuôngc) DE cắt AB tại F, chứng minh AE//FCBÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại Ia) chứng minh tam giác IBC cânb)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quyBÀI 3 cho tam giác ABC...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

2
5 tháng 10 2017

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).