K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8 2021

Trong tam giác vuông ABH ta có:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=6\)

Áp dụng định lý Pitago:

\(AB^2=AH^2+BH^2=40\)

\(\Rightarrow AB=2\sqrt{10}\)

Trong tam giác vuông ABC:

\(tanB=\dfrac{AC}{AB}\Rightarrow AC=AB.tanB=\dfrac{2\sqrt{10}}{3}\)

NV
4 tháng 8 2021

undefined

1 tháng 8 2021

ΔABC vuông cân tại A⇒AB=AC=4

Áp dụng hệ thức lượng ta có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{4^2}+\dfrac{1}{4^2}\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{16}+\dfrac{1}{16}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{8}\\ \Rightarrow AH^2=8\\ \Rightarrow AH=\sqrt{8}\)

 

1 tháng 8 2021

Vì ΔABC vuông cân tại A

  ⇒ AB = AC = 4 cm

Áp dụng dịnh lí Py-ta-go vào ΔABC vuông tại A ta có:

    BC2=AB2+AC2=42+42=32

⇔BC=\(4\sqrt{2}\)

Ta có:AB.AC=AH.BC (hệ thức lượng)

   ⇔\(AH=\dfrac{AB.AC}{BC}=\dfrac{4.4}{4\sqrt{2}}=2\sqrt{2}\left(cm\right)\)

NV
27 tháng 7 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=5\)

Trong tam giác vuông ABC, AM là trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5}{2}\)

Áp dụng hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\)

Áp dụng định lý Pitago cho tam giác vuông AHM:

\(HM=\sqrt{AM^2-AH^2}=\dfrac{7}{10}\)

NV
27 tháng 7 2021

undefined

11 tháng 8 2021

Xét  \(\Delta HAB\) vuông tại H \(\left(AH\perp BC\right)\),ta có:

\(AB^2=AH^2+BH^2\left(ĐLPytago\right)\\ \Rightarrow BH^2=AB^2-AH^2\\ \Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{7^2-2^2}=3\sqrt{5}\left(cm\right)\)

Xét  \(\Delta ABC\) vuông tại A và có AH là đường cao \(\left(AH\perp BC\right)\),ta có:

\(AH^2=BH.CH\left(HTL\right)\\ \Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{2^2}{3\sqrt{5}}=\dfrac{4\sqrt{5}}{15}\left(cm\right)\)

 

 

Ta có: \(\dfrac{HC}{AC}=\dfrac{1}{3}\)

nên AC=3HC

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AH^2+HC^2=AC^2\)

\(\Leftrightarrow9HC^2-HC^2=4^2=16\)

\(\Leftrightarrow HC=\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AC=3\cdot HC=3\sqrt{2}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H,ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=4^2+2^2=20\)

hay \(AB=2\sqrt{5}\left(cm\right)\)

6 tháng 8 2021

làm sao 9HC^2- HC^2= 4^2 VẬY

TẠI SAO HC=căn bậc hai

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=4^2-2^2=12\)

\(\Leftrightarrow HB=2\sqrt{3}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{2^2}{2\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

27 tháng 7 2021

cảm ơn

khocroi

10 tháng 7 2018

hình tự vẽ nhé:

Áp dụng hệ thức lượng ta có:

       \(AC^2=HC.BC=9BC\)

       \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(400+9BC=BC^2\)

\(\Leftrightarrow\)\(BC^2-9BC-400=0\)

\(\Leftrightarrow\)\(\left(BC-25\right)\left(BC+16\right)=0\)

\(\Leftrightarrow\)\(BC=25\)

 \(\Rightarrow\)\(AC^2=9.25=225\)

\(\Rightarrow\)\(AC=\sqrt{225}=15\)

     Áp dụng hệ thức lượng ta có:

              \(AB.AC=AH.BC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{20.15}{25}=12\)

10 tháng 7 2018

MÌNH CẦN BÀI 2 BÀI 1 ĐƯỢC RỒI 

1 tháng 8 2023

A B C H I

a/

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)

\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)

\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

Bạn tự thay số tính nốt nhé vì số hơi lẻ

b/

Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)

Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC

Xét tg vuông ABI có

\(BI=\sqrt{AB^2+IA^2}\) (pitago)

Bạn tự thay số tính nhé