K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 10 2018
Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có
MAK = MCK, OKA = OAK nên
MAK + OKA = MCK + OAK = 90 độ
Do đó AM vuông góc IK
1 tháng 7 2023
a:
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc OAC+góc AED=90 độ
=>góc OAC+góc AHD=90 độ
=>góc OAC+góc ABC=90 độ
=>góc OAC=góc OCA
=>OA=OC và góc OBA=góc OAB
=>OA=OB=OC
=>O là trung điểm của BC
b: góc KAB+góc OAB=90 độ
gócHAB+góc OBA=90 độ
mà góc OAB=góc OBA
nên góc KAB=góc HAB
=>AB là phân giác của góc HAK
c: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
A B C H I K M O
Gọi O là giao điểm của AM và IK
Vì tam giác ABC vuông tại A và có đường trung tuyến AM nên ta có AM = BM = CM = 1/2BC
=> Tam giác ABM cân tại M =>\(\widehat{MAB}=\widehat{MBA}\)
Dễ thấy AIHK là hình chữ nhật vì \(\widehat{BAC}=\widehat{AKH}=\widehat{AIH}=90^o\)
=> \(\widehat{KIA}=\widehat{AHK}\) (tính chất hình chữ nhật)
Mà : \(\hept{\begin{cases}\widehat{AHK}+\widehat{AHI}=90^o\\\widehat{BHI}+\widehat{AHI}=90^o\end{cases}}\) => \(\widehat{AHK}=\widehat{BHI}\) hay \(\widehat{KIA}=\widehat{BHI}\)
Ta có : \(\widehat{BHI}+\widehat{ABC}=90^o\) mà \(\widehat{BHI}=\widehat{KIA};\widehat{MAB}=\widehat{ABC}\)
=> \(\widehat{KIA}+\widehat{MAB}=90^o\) mà trong tam giác AOI : \(\widehat{KIA}+\widehat{MAB}+\widehat{AOI}=180^o\)
=> \(\widehat{AOI}=90^o\Rightarrow AM\perp IK\) (đpcm)
Gọi O là giao điểm của AM và IK.
Tứ giác AIHK có 3 góc vuông nên AIHK là hình chữ nhật nên góc HKI = góc AIK.
góc HKI phụ góc IKA mà góc IKA = góc HAK suy ra góc HKI phụ góc HAK.
Do đó góc HKI = góc C (cùng phụ góc HAK). Suy ra góc AIK = góc C. (1)
Dễ dàng chứng minh được góc B = góc MAB nên MAB phụ góc C. (2)
Từ (1) và (2) suy ra góc AIK phụ góc MAB hay góc IOA = 900.
Vậy AM vuông góc với IK.