K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

a) Xét tam giác CED và tam giác CAB có:

góc C chung

góc CED = góc CAB = 90 độ

=> Tam giác CED đồng dạng tam giác CAB.

b) Theo định lí Pythago, ta sẽ có: AB2+AC2=BC2 <=> BC=15 (cm)

Tam giác CED đồng dạng tam giác CAB (chứng minh trên)

=> \(\frac{CD}{CB}=\frac{ED}{AB}=>\frac{CD}{DE}=\frac{CB}{AB}=>\frac{CD}{DE}=\frac{15}{9}=\frac{5}{3}\)

c) AD là phân giác góc BAC. Theo tính chất đường phân giác trong tam giác, ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{9}{12}=\frac{3}{4}\)

\(=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{7}=\frac{BC}{7}=\frac{15}{7}\)

\(=>CD=\frac{15\times4}{7}=\frac{60}{7}\left(cm\right)\)

Mà \(\frac{CD}{DE}=\frac{5}{3}=>\frac{\frac{60}{7}}{DE}=\frac{5}{3}=>DE=\frac{36}{7}\left(cm\right)\)

Theo định lí Pythago trong tam giác vuông DEC vuông tại E, ta có:

DE2+EC2=DC2 => EC=48/7 (cm)

=> AE=AC-EC=12-48/7=36/7 (cm)

Kẻ DK vuông góc AB

Ta có: Tứ giác KDEA là hình chữ nhật (có 3 góc vuông)

=> DK=AE=36/7 (cm)

Vậy diện tích tam giác ABD là:

\(\frac{AB\times DK}{2}=\frac{9\times\frac{36}{7}}{2}=\frac{162}{7}\left(cm^2\right)\)

a: Xét ΔADE vuông tại E và ΔCDA vuông tại A có

góc CDA chung

=>ΔADE đồng dạng với ΔCDA

b: DE*DC=DA^2=AB^2/4

c: DB^2=DE*DC

=>DB/DE=DC/DB

=>ΔDBC đồng dạng với ΔDEB

=>góc DCB=góc DBE

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm