K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

17 tháng 6 2018

sai đề bài bạn ạ

17 tháng 6 2018

vì tam giác ABC vuông tại A rùi nên AC là đường cao, chỉ có đg cao CH thui bạn

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

2 tháng 8 2016

Vẽ hơi xấu

a)Xét tứ giác ADHE có:^ADH=90(gt)

                                    ^DAE=90(gt)

                                    ^AEH=90(gt)

=>Tứ giác ADHE là hình chữ nhật

b)Vì ADHE là hình chữ nhật(cmt)

=>DE=AH

Áp dụng hệ thức liên quan tới đường cao mta có:

 AH^2=BH.CH=4.9=36

=>AH=6

=>AH=DE=6

c)Gọi O là giao điểm của DE và AH

Vì ADHE là hình chữ nhật 

=>OA=OD

=>ΔOAD cân tại O

=>^OAD=^ODA              (1)

Ta có:^DAH=^ACB(cùng phụ với ^HAC)         (2)

Từ (1) (2)

=>^ODA=^ACB

Xét ΔADE và ΔACB có:

    ^A:góc chung

   ^EDA=^BCA(cmt)

=>ΔADE~ΔACB(g.g)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

=>AD.AB=AC.AE

 

 

2 tháng 8 2016

Ta có: ADHE là hình chữ nhật => DE =AH 
mà AH^2 = HB.HC = 36 
=> DE=AH =9 

b] 
Do ADHE là h.c.n => ^ADE = ^AHE 
mà ^AHE = ^ACH (góc có cạnh t/ư vuông góc) 
=> ^ADE = ^ACB (*) 
=> tg ADE ~ tg ABC (do * và có chung góc vuông) 
=> AD/AE = AC/AB 
=> AD.AB = AC.AE 

c] 
Ta có ^MDH = ^ADE (do cùng phụ ^HDE) 
mà ^ADE = ^ACB = ^BHD (theo cm trên và DH//AC) 
=> tg DMH cân => BM=DM=MH