K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hcn

b: AIHK là hcn

=>góc AIK=góc AHK=góc C

=>ΔAIK đồng dạng với ΔACB

10 tháng 5 2015

a.Xét tứ giác AIHK có: góc BAC=AIH=AKH=90 ĐỘ

Suy ra AIHK là hình chữ nhật

b.Gọi O là giao điểm của 2 đường chéo hình AIHK

Ta có góc AIO=AHK( tính chất hình chữ nhật )

mà AHK +KHC=90 độ

Góc ACB + KHC cũng bằng 90 độ

nên góc AHK Bằng góc ACB

Nên góc AIK = ACB

Xét tam giác  AKI và tam giác ABC có

góc A chung 

Góc AIK = ACB (chứng minh trên)

Suy ra Tam giác AKI đồng dạng với tam giác ABC (g.g)

 

 

5 tháng 5 2016

nguyễn tạ kiều trinh làm sai rồi nhá

a: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

Suy ra: AH=IK

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AH^2=AI\cdot AB\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AH^2=AK\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

hay AI/AC=AK/AB

Xét ΔAIK vuông tại A và ΔACB vuông tại A có

AI/AC=AK/AB

Do đó: ΔAIK\(\sim\)ΔACB

10 tháng 2 2023

tại sao AH^2 = AI. AB