K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

B C M E D 1 2 3 4 A N 1 2 1 2 1 2 1 2 1 2 I

tg là tam giác nha ! 

a ) 

Ta có : gócA1 +  gócBAC = gócDAC ( AB nằm giữa AD và AC ) 

=> gócA1 = gócDAC - gócBAC = 90o - gócBAC ( 1 ) 

Ta có : gócA2 + gócBAC = gócBAE ( AC nằm giữa AB và AE ) 

=> gócA2 = gócBAE - gócBAC = 90o - gócBAC ( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : gócA1 = gócA2 . 

Xét tgABD và tgACE , có : 

AD = AC ( gt ) 

AB = AE ( gt ) 

gócA1 = gócA2 ( cmt ) 

Do đó : tgABD = tgACE ( c - g - c ) 

=> BD = CE ( 2 cạnh tương ứng ) .

b ) Xét tgABM và tgNCM , có : 

gócM1 = gócM2 

BM = CM ( AM là trung tuyến) 

AM = NM ( gt ) 

Do đó : tgABM = tgNCM ( c - g - c ) 

=> gócC1 = gócB1 ( 2 góc tương ứng ) 

Mà : gócB1 = gócADC + gócA1 ( góc ngoài của tg bằng tổng 2 góc trong không kề với nó ) 

Do đó : gócC1 = gócADC + gócA1  

Ta có : gócC2 + gócDAC + gócADC = 180o  ( tổng 3 góc trong tg ) 

=> gócC2 = 180o -  gócDAC - gócADC    = 180o - 90o - gócADC = 90o - gócADC   

Ta có : gócACN = gócC1 + gócC2 ( DC nằm giữa AC và NC ) 

   =>    gócACN = ( gócADC + gócA1 ) + ( 90o - gócADC ) = gócADC + gócA1 + 90o - gócADC = 90o + gócA1  ( 3 ) 

Ta có : gócDAE = gócBAE + gócA1 ( AB nằm giữa AD và AE ) 

=>       gócDAE =    90o      + gócA1  ( 4 ) 

Từ ( 3 ) và ( 4 ) suy ra : gócACN = gócDAE ( 5 ) 

Ta có : tgABM = tgNCM  ( cmt ) 

=> AB = CN ( 2 cạnh tương ứng ) 

Mà : AB = AE ( gt ) 

Do đó : CN = AE ( 6 ) 

Xét tgADE và tgACN , có : 

AD = AC  ( gt ) 

AE = CN ( cmt ( 6 ) ) 

gócACN = gócDAE ( cmt ( 5 ) )

Do đó : tgADE = tgACN ( c - g - c ) 

c )  Nằm ngoài khả năng của mình rồi ! 

Học tốt nha ! 

7 tháng 1 2019

thanks nhưng em chỉ còn câu C nhưng vẫn cảm ơn anh nhiều

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

(hình bạn tự vẽ nhá :v )

a) Có  goc BAC=90độ=>góc EAF=90độ

HE vuong goc voi AB =>góc HEA=90độ

HF vuong goc voi AC=>góc HFA=90độ

==>AEHF là hình chữ nhật

Có góc ABC=góc EHA

mà góc EHA= góc EFA

      góc ABC+OAC=90 độ 

=>góc OAC+góc AFE=90 độ =>OA vuông góc với EF

b)có góc PBA=góc PFA

 góc APC=góc ABC

mà góc ABC= góc AFP

=>goca PBA= góc APE=>tam giác AEP đồng dạng vs APB (gg)

=>AP^2=AE.AB

mà AH^2=AE.AB

=>tam giac PAH cân

c)

Chứng minh tam giác DKC đồng dạng với tam giác DBA (g-g) , Suy ra DK.DA=DC.DB (1)

Chứng minh Tứ giác BEFC nội tiếp ( góc AEF = góc FCH cùng bắng với góc AHF )

Từ đó chứng minh hai tam giác DFC và DBE đồng dạng (g-g), Suy ra DF.DE=DC.DB (2)

Từ (1) và (2) suy ra DK.DA = DF.DE. Từ đó chứng minh tam giác DKF đồng dạng với DEA (theo trường hợp c-g-c)

Suy ra góc DKF = góc DEA

Suy ra tứ giác AEFK nội tiếp

d) chứng minh được OA vuông góc với PQ.
Suy ra cung AP=cung AQ. suy ra ˆADP=ˆACKADP^=ACK^
=> KFCD nội tiếp => ΔIFC∼ΔIDKΔIFC∼ΔIDK
=> IC.ID=IF.IK.  rồi cm IH^2=IF.IK dựa vào tứ giác AKFH nội tiếp do tứ giác AEFK nội tiếp