Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a: Xét tứ giác ADEF có
\(\widehat{ADE}=\widehat{AFE}=\widehat{DAF}=90^0\)
=>ADEF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của CB
ED//AB
Do đó: D là trung điểm của AC
Xét tứ giác AECK có
D là trung điểm chung của AC và EK
=>AECK là hình bình hành
Hình bình hành AECK có AC\(\perp\)EK
nên AECK là hình thoi
c: Xét ΔABC có
E,D lần lượt là trung điểm của CB,CA
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{AB}{2}\)
mà \(ED=\dfrac{EK}{2}\)
nên EK=AB
Ta có: ED//AB
D\(\in\)EK
Do đó: EK//AB
Ta có: ADEF là hình chữ nhật
=>AE cắt DF tại trung điểm của mỗi đường
=>O là trung điểm chung của AE và DF
Xét tứ giác ABEK có
KE//AB
KE=AB
Do đó: ABEK là hình bình hành
=>AE cắt BK tại trung điểm của mỗi đường và AE=BK
mà O là trung điểm của AE
nên O là trung điểm của BK
=>B,O,K thẳng hàng
ΔEMA vuông tại M
mà MO là đường trung tuyến
nên \(MO=\dfrac{AE}{2}\)
mà AE=DF
nên \(MO=\dfrac{DF}{2}\)
Xét ΔDMF có
MO là đường trung tuyến
MO=DF/2
Do đó: ΔDMF vuông tại M
=>\(\widehat{DMF}=90^0\)
a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
c) Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành ( D/h 5 )
mà AB vuông góc EM
=> hbh AEBM là hình thoi ( D/h 3 )
d) Ta có : AM = 1/2BC ( trung tuyến ứng với cạnh huyền)
=> AM = 1/2 . BC = 1/2. 5 = 2,5 (cm)
Chu vi hình thoi AEBM:
2,5 . 4 =10 (cm)
Xl bạn trình độ mik chỉ làm đc vậy thôi nha!
D N A C B F E
Chứng minh
a, Xét tứ giác ANEF có:
Góc NAF= 900 ( vì ΔABC vuông tại A)
Góc ANF= 900 (vì EN⊥ AC)
Góc AFE= 900 ( vì EF ⊥ AB)
⇒ Tứ giác ANEF là hình chữ nhật( đpcm)
b)Xét tam giác BAC vuông tại A có:
AE là đường trung tuyến(BE=EC)
\(\Rightarrow\)AE=BE=EC
Xét t/g AEBD có:
BF=FA(EF vuông góc BA)
DF=FE(D đx với E qua F)
\(\Rightarrow\)T/g AEBD là hbh
Mà AE=BE(cmt)
\(\Rightarrow\)T/g AEBD là hthoi