K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

xét tam giác ADH(vuông tại H) và tam giác ADE(vuông tại E) có :

góc HAD= góc EAD( vì AD là phân giác của góc HAC).

AD chung.

do đó: tam giác ADH= tam giác AED( cạnh huyền. Góc nhọn).

=>HD=DE.

xét tam giác HDK và tam giác EDC có:

góc AHD= góc CED=90 độ.

HD=DE. 

góc HDK= góc EDC( 2 góc đối đỉnh)

do đó tam giác HDK = tam giác EDC(g-c-g). => DK=DC=> tam giác DKC cân tại D

 

e: I là trực tâm của ΔBAD

=>DI vuông góc AB

=>DI//AC

=>góc BDI=góc ACB

DT là phân giác của góc IDB

=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB

DI//AC

=>góc IDA=góc DAC

AD là phân giác của góc HAC

=>góc DAC=1/2*góc HAC

=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ

=>góc IDT+góc IDA=1/2*90=45 độ

=>góc TDA=45 độ

=>ΔTDA vuông cân

14 tháng 5 2023

hack tht! cảm ơn ạ

 

17 tháng 3 2019

B A C D E H K M

Cm: a) Xét t/giác ABD và t/giác AED

có AB = BE (gt)

  góc ABD = góc EBD (gt)

  BD : chung

=> t/giác ABD = t/giác AED (c.g.c)

=> AD = ED (hai cạnh tương ứng)

b) Ta có: t/giác ABD = t/giác AED (Cmt)

=> góc A = góc BED (hai góc tương ứng)

Mà góc A = 900 => góc BED = 900

=> DE \(\perp\)BC

 AH \(\perp\)BC

=> AH // DE (Đpcm)

c) Ta có: AH // DE (cmt)

=> góc AHD = góc HDE (so le trong)

Xét t/giác AHM và t/giác KDM 

có AH = DK (gt)

 góc AHM = góc MDC (cmt)

 HM = DM (gt)

=> t/giác AHM = t/giác KDM (c.g.c)

=> AM = KM (hai cạnh tương ứng)

=> AM \(\equiv\)MK

=> Ba điểm A, M, K thẳng hàng