Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD
Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = MB
b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ
\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC
\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)
\(\Rightarrow\Delta BCD\)cân tại D
Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)
\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC
\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC
c,Xét tam giác ADE và tam giác MDC có
\(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)
\(\widehat{DAE}=\widehat{DMC}=90^O\)
AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)
Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)
\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)
\(\Rightarrow BE=BC\)
\(Xét\Delta BEF\)và \(\Delta BCFcó\)
góc EBF = góc CBF
BF cạnh chung
BE=BC
Do đó tam giác BEF =tam giác BCF [c.g.c]
\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)
\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng
Chúc bạn học tốt
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)