Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng định lý tổng 3 góc trong một tam giác ta có:
$\widehat{AIC}=180^0-(\widehat{IAC}+\widehat{ICA})=180^0-\frac{\widehat{A}+\widehat{C}}{2}$
$=180^0-\frac{180^0-\widehat{B}}{2}=180^0-\frac{180^0-60^0}{2}=120^0$
b)
Xét tam giác $APK$ có $AH$ đồng thời là đường cao và đường phân giác nên $APK$ là tam giác cân tại $A$
Do đó: đường cao $AH$ đồng thời cũng là đường trung tuyến.
$\Rightarrow HK=\frac{1}{2}PK=\frac{1}{2}.6=3$ (cm)
Áp dụng định lý Pitago: $AK=\sqrt{AH^2+HK^2}=\sqrt{4^2+3^2}=5$ (cm)
c)
Kẻ phân giác $IT$ của $\widehat{AIC}$ thì $\widehat{AIT}=\widehat{CIT}=60^0$
$\widehat{AIE}=\widehat{CID}=180^0-\widehat{AIC}=60^0$
Xét tam giác $AEI$ và $ATI$ có:
$\widehat{EAI}=\widehat{TAI}$
$\widehat{AIE}=\widehat{AIT}=60^0$ (cmt)
$AI$ chung
$\Rightarrow \triangle AEI=\triangle ATI$ (g.c.g)
$\Rightarrow IE=TI(1)$
Tương tự: $\triangle CTI=\triangle CDI$(g.c.g)
$\Rightarrow TI=DI(2)$
$(1);(2)\Rightarrow IE=ID$ nên $IDE$ là tam giác cân tại $I$.
tự kẻ hình
a) xét tam giác ABE và tam giác DBE có
BE chung
B1=B2(gt)
BAE=BDE(=90 độ)
=> tam giác ABE= tam giác DBE(ch-gnh)
=> AB=BD( hai cạnh tương ứng)
đặt O là giao điểm của AD và BE
xét tam giác ABO và tam giác DBO có
B1=B2(gt)
AB=BD(cmt)
BO chung
=> tam giác ABO= tam giác DBO(cgc)
=> AO=DO( hai cạnh tương ứng)=> O là trung điểm của AD=> BO là trung tuyến
vì BO vừa là trung tuyến, vừa là tia phân giác của góc ABC=> BE là trung trực của AD
c) vì AB=BD=> tam giác ABD cân B, mà ABD= 60 độ=> ABD đều
=> ABD=BDA=DAB=60 độ
vì AH vuông góc với BC=> HAB+ABH= 90 độ=> HAB=90-60=30 độ
=> HAD+ADH=90 độ=> HAD=90-60=30 độ
xét tam giác BAH và tam giác DAH có
AH chung
AHB=AHD(=90 độ)
HAB=HAD(=30 độ)
=> tam giác BAH= tam giác DAH(gcg)
=> BH=DH( hai cạnh tương ứng)=>H là trung điểm của BD=> AH là trung tuyến của BD
vì AH giao BE tại I mà AH, BE là trung tuyến
=> I là trọng tâm của tam giác ABD => AI=2/3AH
vì H là trung điểm của BD mà BD=AB=> BH=6/2=3cm
ta có AH^2=AB^2-BH^2=> AH^2=6^2-3^2=> AH^2=25=> AH=5 (AH>0)
=> AI=2/3*5=10/3cm
phần b) không ghi rõ nên mik ko giải đc
Tham khảo:
Cho tam giac ABC(A=90) AB=6cm;AC=8cm?
a>giai tam giac ABC b> phan giac cua goc A cat BC tai D Tinh BD;CD c> goi E;F lan luot la hinh chieu cua D tren AB va AC Tu giac AEDF la hinh gi ? Tinh chu vi va dien h cua tu giac AEDF
a)
Tam giác ABC là tam giác vuông nên áp dụng định lí Pitago, ta có:
*BC^2=AB^2+AC^2=100=>BC=10cm
*tính góc thig bạn có thể dùng nhiều cách: định lí sin, định lí cosin, công thức lượng giác
-Công thức lượng giác:sin B= AC/BC=0,8 =>B~ 53*8**
=>C~ 36*52**
b)Áp dụng định lí đường phân giác AD của tam giác ABC ta có:
BD/AB= CD/AC
Lại theo tính chất dãy tỉ số bằng nhau, có:
BD/AB= CD/AC= (BD+CD)/ (AB+AC)= BC/(AB+AC)= 10/14= 5/7
Vậy:
*BD/AB=5/7
=>BD= (AB.5)/7=30/7~4,286 cm
*BD+DC=BC
=>DC= BC-BD= 5,714 cm
c)
Vì E, F lần lượt là hình chiếu của D trên AB và AC nên góc AED= góc DFA=90*
Xét thấy tứ giác AEDF có 3 góc vuông nên AEDF là hình vuông
d)
*Xét tam giác vuông DFC:
Theo công thức lượng giác có: sin C= DF/DC
=>DF= sin C. DC= 3,428 cm
*AF+ FC= AC
=>AF= AC-FC= 4,572 cm
*Chu vi AEDF=2.DF+2.AF= 16 cm
*Diện tích AEDF=AF.DF= 15,673 cm^2
Tam giác ABC là tam giác vuông nên áp dụng định lí Pitago, ta có:
*BC^2=AB^2+AC^2=100=>BC=10cm
*tính góc thig bạn có thể dùng nhiều cách: định lí sin, định lí cosin, công thức lượng giác
-Công thức lượng giác:sin B= AC/BC=0,8 =>B~ 53*8**
=>C~ 36*52**
b)Áp dụng định lí đường phân giác AD của tam giác ABC ta có:
BD/AB= CD/AC
Lại theo tính chất dãy tỉ số bằng nhau, có:
BD/AB= CD/AC= (BD+CD)/ (AB+AC)= BC/(AB+AC)= 10/14= 5/7
Vậy:
*BD/AB=5/7
=>BD= (AB.5)/7=30/7~4,286 cm
*BD+DC=BC
=>DC= BC-BD= 5,714 cm
c)
Vì E, F lần lượt là hình chiếu của D trên AB và AC nên góc AED= góc DFA=90*
Xét thấy tứ giác AEDF có 3 góc vuông nên AEDF là hình vuông
d)
*Xét tam giác vuông DFC:
Theo công thức lượng giác có: sin C= DF/DC
=>DF= sin C. DC= 3,428 cm
*AF+ FC= AC
=>AF= AC-FC= 4,572 cm
*Chu vi AEDF=2.DF+2.AF= 16 cm
*Diện tích AEDF=AF.DF= 15,673 cm^2