Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :
AB2 +AC2 = BC2
<=> 62 +AC2 = 102
<=> AC2 = 64
<=> AC=8 (cm )
ta có AB < AC < BC (6 < 8 < 10 )
=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )
b/ xét tam giác CAB và CAD có
CA chung
AB = AD ( vì A là trung điểm của BD )
\(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )
=> tam giác CAB = tam giác CAD ( c - g - c )
=> CB = CD
=> tam giác BCD cân tại C
các câu còn lại mk k biết làm dâu
học tốt
A B C D K Q M 1 2 1
a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62
=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)
=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)
b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)
=> Tam giác BCD cân tại C (đpcm)
c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.
=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)
d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)
Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C1 (2)
Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC
Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.
=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD
=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .
a, AB2 + AC2 = BC2 \(\Rightarrow\) AC2 = BC2 - AB2 hay AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC2 = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8
SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )
b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ)
AB = AD ( A là trung điểm BD )
AC : cạnh chung
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADC ( 2 cạnh góc vuông )
\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )
\(\Rightarrow\)\(\Delta\)BCD cân
ý c với d mình đang nghĩ đới nhá ^_^
a,AD ĐL pytago vào \(\Delta ABC\)vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=10^2-6^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
Xét \(\Delta BCD\)có: A là trung điểm của BD
K là trung điểm của BC
AC giao DK tại M
=>M là trọng tâm của \(\Delta BCD\)
\(\Rightarrow MC=\frac{2}{3}AC=\frac{2}{3}.8=5,3\left(cm\right)\)
b.Ta có:\(AB< AC< BC\)
\(\Rightarrow\widehat{BAC}>\widehat{ABC}>\widehat{ACB}\)
c.Ta có:\(\widehat{A}=90^o\)và A là trung điểm của BD
=>AC là đường trung trưc của BD
=>CB=CD
=>\(\Delta BCD\)cân tại C
d. bạn tự cm \(\Delta ABC=\Delta ADC\left(c.g.c\right)\)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)(2 g.t.ư) (1)
Q là ttruc của AC=>QA=QC
=> tg AQC cân tại Q
=>\(\widehat{A_1}=\widehat{C_1}\)(2)
Từ (1) và (2)=>\(\widehat{C_1}=\widehat{A_1}\)
Mà 2 góc này ở VT SLT=>AQ//BC(3)
Lại có:A là trung điểm của BD(4)
Từ (3) và (4) => AQ là đường trb của tg BCD
=>Q là tđ củaDC
=>BQ là đường ttuyen của tgBCD
Mà M là trọng tâm của tg BCD
=> thẳng hàng
c: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
a: AB<AC<BC
=>góc C<góc B<góc A
b: XétΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>CM=2/3*8=16/3cm
M tùy ý thì sao bn