Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H 1 2
\(AH=\frac{1}{2}BC\) \(\Rightarrow AH=BH=HC\)
=> Tam giác BHA vuông cân \(\Rightarrow\widehat{A}_1=\widehat{B}=45^0\)
=> Tam giác CHA vuông cân \(\Rightarrow\widehat{A}_2=\widehat{C}=45^0\)
\(\Rightarrow\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=45^0+45^0=90^0\)
Vậy \(\widehat{BAC}=90^0\)
Ra rồi đây.
Ta có: \(\widehat{B}+\widehat{C}+\widehat{A}=180\) độ
\(\Rightarrow4\widehat{A}+4\widehat{A}+\widehat{A}=180\)độ
\(\Rightarrow9\widehat{A}=180\Rightarrow\widehat{A}=180:9=20\)độ
A B C H I k
Kí hiệu như trên hình.
Ta có góc IAH + góc AKH = 90 độ
Góc KAB + góc CAK = 90 độ. Mà góc HAI = góc KAB
=> Góc CAK = góc CKA => Tam giác CAK cân tại I
Mà CI là đường phân giác => CI vuông góc AK => góc AIC = 90 độ
\(\widehat{CAI}=90^0-\widehat{BAI}\)
\(\widehat{ACI}=\dfrac{\widehat{ACH}}{2}\)
Do đó: \(\widehat{CAI}+\widehat{ACI}=90^0+\dfrac{\widehat{BAH}}{2}-\widehat{BAI}=90^0\)
hay \(\widehat{AIC}=90^0\)
A B C D a)
ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C
ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD
CM tương tự ta có: CD=AB
xét \(\Delta ABC\) và \(\Delta DCB\) có:
BD=AC(cmt)
AB=DC(cmt)
BC(chung)
\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)
=>\(\widehat{BAC}=\widehat{BDC}=80^o\)
b)
theo câu a, ta có:
\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)
=>CD//AB(2 góc slt)
A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn
ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé