K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

xét tam giác AHB và tam giác CAB có:

góc H = góc A = 90 độ

góc B chung

=> tam giác AHB ~ tam giác CAB

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC

a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BE là phân giác

=>AE/AB=CE/BC

=>AE/3=CE/5=16/8=2

=>AE=6cm; CE=10cm

b: Xet ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA
=>ΔHAB đồng dạng vơi ΔHCA
c: ΔABC vuông tại A

mà AH là đường cao

nên BA^2=BH*BC

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: ΔACB vuông tại A có AH là đường cao

nên AB^2=BH*BC

19 tháng 4 2021

19 tháng 4 2021

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

BH=3^2/5=1,8cm

c: BE là phân giác

=>AE/AB=HE/BH

=>AE/5=HE/3=(AE+HE)/(5+3)=0,3

=>AE=1,5cm và HE=0,9cm

18 tháng 8 2021

lần đầu ng

 

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

a: BC=10cm

b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có 

\(\widehat{CBA}\) chung

Do đó: ΔCAB\(\sim\)ΔAHB

c: Ta có: ΔCAB\(\sim\)ΔAHB

nên AC/HA=AB/HB=CB/AB

hay \(AB^2=BH\cdot BC\)

BH=3,6cm

=>CH=6,4cm

17 tháng 3 2023

Ủa còn câu D đâu