K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2020

a, Từ D kẻ \(DE\perp AB\), \(DF\perp AC\)

\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật và có : \(\widehat{A}=\widehat{E}=\widehat{D}=\widehat{F}=90^o\)

Mà đường chéo AD là phân giác

\(\Rightarrow\) AEDF là hình vuông

\(\Rightarrow\) \(DE=DF=\frac{AD}{\sqrt{2}}\)

Ta có : DE//AC \(\Rightarrow\) \(\frac{DE}{AC}=\frac{BD}{BC}\)

DF//AB \(\Rightarrow\) \(\frac{DF}{AB}=\frac{DC}{BC}\)

\(\Rightarrow\) \(\frac{DF}{AB}+\frac{DE}{AC}=1\)

\(\Rightarrow DF.\left(\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Rightarrow\) \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

15 tháng 10 2016

A B D C E

a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)

\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)

\(S_{ABC}=\frac{1}{2}AB.AC\)

Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

b/ Tương tự 

30 tháng 9 2019

A B C D E F

Đặt AB = a  ; AC = b ;  AD = c . Kẻ DE vuông góc AC ( \(E\in AB;F\in AC\) )
Ta có tứ giác AFDE là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) , AD phân giác trong của \(\widehat{EAF}\) nên \(\widehat{AFDE}\) là hình vuông . Suy ra 

\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{C\sqrt{2}}{2}\) . Ta có :

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\frac{1}{2}AB.DE+\frac{1}{2}DF.AC=\frac{1}{2}AC.AB\)

\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)

\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) . Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)

Chúc bạn học tốt !!!