Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3
a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
nên AMIN là hình chữ nhật
b: IN=3cm
nên AM=3cm
IM=4cm
nên AN=4cm
Xét ΔABC có
I là trung điểm của BC
IM//AC
Do đó: M là trung điểm của AB
=>AB=6cm
Xét ΔABC có
I là trung điểm của BC
IN//AB
Do đó: N là trung điểm của AC
hay AC=8cm
\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: Xét tứ giác ADCI có
N là trung điểm của AC
N là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .
→ AI = MN
b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :
AI = IC
→ ΔAIC cân tại I
→ Góc IAN = góc ICN
Xét ΔAIN và ΔCIN có :
Góc INA = Góc INC = 90o
AI = IC
Góc IAN = góc ICN
→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )
→ AN = NC
Ta có : IN = ND
AN = NC
→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .
Bạn tự vẽ hình nhé!
c) Kẻ IH//BK ( K\(\in\) DC)
=> IH//NK
Xét \(\Delta\) BKC có:
IH//BK
BI = CI ( I là trung điểm của BC)
=> KH = CH (1)
Xét \(\Delta\) IDH có:
IH//NK
IN = DN ( D là điểm đối xứng của I qua N)
=> KH = KD (2)
Từ (1) và (2) suy ra :
KH = CH = KD = \(\frac{1}{2}\) DC
=> \(\frac{DK}{DC}\) = \(\frac{1}{3}\) ( đpcm)
XONG !!!