K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

Nguyễn Lê Phước Thịnh66GP , Karen9GP

 

undefinedhuhu giúp thêm bài 11 nữa dc không ạ vẽ hình nữa nha

15 tháng 12 2020

a) \(S_{ẠHKI}=AH^2=4\) (cm2).

b) Áp dụng định lý Thales ta có:

\(\dfrac{AF}{AC}=\dfrac{HK}{HC}\Leftrightarrow\dfrac{AF}{AC}=\dfrac{AH}{HC}\).

Lại có: \(\Delta AHC\sim\Delta BAC\left(g.g\right)\Rightarrow\dfrac{AH}{HC}=\dfrac{BA}{AC}\).

Do đó AF = BA. Dễ dàng suy ra được ABEF là hình vuông.

c) Tứ giác FKEB nội tiếp đường tròn đường kính FB nên:

\(\widehat{EKB}=\widehat{EFB}=45^o\) (cùng chắn cung EB).

Mà \(\widehat{IHK}=45^o\) nên HI // EK.

 

15 tháng 12 2020

d) Gọi X là giao điểm của BF và AE.

5 điểm F, K, E, B, A cùng thuộc đường tròn đường kính FB mà XF = XE = XA = XB nên XK = XA.

Từ đó X nằm trên đường trung trực của AK hay X nằm trên IH.

Vậy ta có đpcm.

13 tháng 12 2020

A B C H K I F E

a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)

b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:

 +) \(\widehat{AIF}=\widehat{AHB}=90^o\)

+) \(AH=AI\)( vì \(AHKI\)là hình vuông )

+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))

\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)

Xét tứ giác \(ABEF\)có: \(BE//AF\)\(AB//EF\)\(\widehat{BAC}=90^o\)\(AB=AF\)

\(\Rightarrow ABEF\)là hình vuông ( đpcm )