K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

A C B H M D E F I J

a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb). 

Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).

b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.

Lại có HB = HE nên AD song song và bằng HE.

Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)

c) Lấy J là trung điểm AF.

Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.

Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.

Vậy nên HJ // AB // EF hay \(HJ\perp AF\)  

Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Vậy thì HA = HF.

d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)

Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)

Nên \(\widehat{IFC}=\widehat{BAH}\)

Ta cũng có \(\widehat{HFE}=\widehat{JHF}\)  (Hai góc so le trong)

\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)

\(\widehat{JHA}=\widehat{BAH}\)  (Hai góc so le trong)

nên \(\widehat{HFE}=\widehat{BAH}\)

Vậy thì \(\widehat{IFC}=\widehat{HFE}\)

Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)

Hay \(HF\perp FI\)

22 tháng 12 2021

\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành

Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn

\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)

Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)

Do đó: ADHE là hình bình hành

\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE

Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)

Do đó \(MN//BH\) hay \(MN//BC\)

Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)

Do đó \(NK//HC\) hay \(NK//BC\)

Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng

22 tháng 12 2021

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Vì AHBD là hình chữ nhật

nên AD//BH và AD=BH

=>AD//EH và AD=EH

=>ADHE là hình bình hành

a: Xét tứ giác AHCD có

M là trung điểm chung của AC và HD

góc AHC=90 độ

=>AHCD là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

=>ADHE là hình bình hành

 

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn

20 tháng 12 2016

Câu c có sai k v bạn??

20 tháng 12 2016

a) Xét tứ giác ABCD có:

. M là trung điểm của BC ( AM là đường trung tuyến)

. M là tđ của AD ( gt)

Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)

\(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)

--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)

b) Ta có: \(IA\perp AC\)

\(CD\perp AC\)

\(\Rightarrow\) IA // CD

Xét tứ giác BIDC có:

. IA // CD (cmt)

\(\Rightarrow\) IB // CD ( B ϵ IA )

. AB =CD ( cạnh đối hcn ABCD )

mà AB = IB ( tính chất đối xứng)

\(\Rightarrow\) IB = CD ( cùng = AB )

Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)

\(\Rightarrow\) BC // ID ( cạnh đối hbh)

" đề câu c sai nha bạn"

30 tháng 11 2018

ứ giác HDAE có ^A=^D=^E=90 độ 
nên HDAE là hình chữ nhật, suy ra AH=DE. 

b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH 
suy ra ∆PDH cân tại P nên ^PDH=PHD (1) 
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2) 
công vế với vế của (1) và (2) ta có: 
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ 
Hay ^PDO=90 độ, nên PD┴DE. (3) 
Chứng minh tương tự cuãng có QE┴DE (4) 
từ (3) và (4) suy ra PD//QE 
nên DEQP là hình thang vuông. 

c) BO và AH là đường cao của ∆ABQ nên O là trực tâm 
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5) 
d)∆BDH vuông tại D có DP là trung tuyến 
nên S(BDH)=2S(DPH) (6) 
tương tự S(HAC) = 2S(HEQ) (7) 
Cộng vế với vế của (5), (6), (7) 
thì S(ABC)=2S(DEQP)

30 tháng 11 2018

dạ em cám ơn chị ạ