Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O là trung điểm của CD.
Do E nằm trên đường tròn (O) nên ^DEC=90o hay DE⊥AC.
Thế thì DE//AB.
Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.
Vậy nên HM//AB//DE hay HM⊥AE.
Suy ra tam giác HAE cân tại H hay ^HEA=^HAE.
Tam giác OEC cân tại O nên ^OEC=^OCE.
Từ đó ta có: ^HEA+^OEC=^HAE+^OCE=90o.
Suy ra ^OEH=180o−90o=90o.
Vậy nên HEHE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:
BC=√AB2+AC2=17(cm)
Do tam giác HAE cân tại H nên:
HE = AH = (AB*AC)/BC=120/17
a) Gọi O là trung điểm của CD.
Do E nằm trên đường tròn (O) nên \widehat{DEC}=90^oDEC=90o hay DE\perp ACDE⊥AC.
Thế thì DE//AB.
Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.
Vậy nên HM//AB//DE hay HM\perp AE.HM⊥AE.
Suy ra tam giác HAE cân tại H hay \widehat{HEA}=\widehat{HAE}HEA=HAE.
Tam giác OEC cân tại O nên \widehat{OEC}=\widehat{OCE}OEC=OCE.
Từ đó ta có: \widehat{HEA}+\widehat{OEC}=\widehat{HAE}+\widehat{OCE}=90^o.HEA+OEC=HAE+OCE=90o.
Suy ra \widehat{OEH}=180^o-90^o=90^o.OEH=180o−90o=90o.
Vậy nên HEHE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:
BC=\sqrt{AB^2+AC^2}=17\left(cm\right)BC=AB2+AC2=17(cm)
Do tam giác HAE cân tại H nên:
HE = AH = \dfrac{AB.AC}{BC}=\dfrac{120}{17}.BCAB.AC=17120.
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
tui mới lớp 3 thôi