Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAEC và ΔAED có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
Do đó: ΔAEC=ΔAED
Suy ra: EC=ED
a) Ta có :
AD=AC (gt) suy ra tam giác ADC là tam giác cân tại góc DAC , suy ra góc ACD =góc ADC (tc)
Theo đấu bài ta có : góc A = 90 độ, suy ra góc ACD = (180 - 90 ) .1/2 = 45 độ
b) Xét tam giác ADE và tam giác ACE có :
AE chung , AC=AD (gt) , DAE=CAE(AE là p/g của góc DAC)
từ đó, suy ra : 2 tam giác bằng nhau với trường hợp (c.g.c)
vậy DE=CE (đpcm)
c) có AE là phân giác góc DAC, mà tam giác DAC là tam giác vân thì : AE là đường cao (tc)
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
a: Ta có:ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BAC}+50^0=90^0\)
=>\(\widehat{BAC}=40^0\)
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có
AB chung
\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)
Do đó: ΔFAB=ΔEBA
d: Sửa đề: I là trung điểm của BA
Xét tứ giác AFBE có
AF//BE
AE//BF
Do đó: AFBE là hình bình hành
=>AB cắt FE tại trung điểm của mỗi đường
mà I là trung điểm của AB
nên I là trung điểm của FE
=>F,I,E thẳng hàng
a: Xét ΔADH và ΔADB có
AD chung
\(\widehat{DAH}=\widehat{DAB}\)
AH=AB
Do đó: ΔADH=ΔADB
=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)
Xét ΔAHE vuông tại A và ΔABC vuông tại A có
AH=AB
\(\widehat{AHE}=\widehat{ABC}\)
Do đó: ΔAHE=ΔABC
=>AE=AC
=>ΔAEC cân tại A
Ta có: ΔAEC cân tại A
mà AD là đường phân giác
nên AD\(\perp\)EC
a. gọi I là giao điểm của DE,BC
Góc BDI=90-góc ABC
Mà góc EDA=góc BDI
=>góc EDA=90-góc ABC
góc C=90 -góc BC
=> góc EDA=góc C
=> Tam giác AED=tam giác ABC(gcg)
b.Từ a: Tam giác AED=tam giác ABC=> AE=AB
=> Tam giác ABE vuông cân tại A
=> góc ABE=góc BEA=45
Và góc BAE=90 (gt)
Ta có : AD = AC
\(\Rightarrow\)\(\Delta\)ADC vuông cân tại A
\(\Rightarrow\)Góc ACD = ( 180° - CÂD ) ÷ 2
\(\Rightarrow\)Góc ACD = ( 180° - 90° ) ÷ 2
\(\Rightarrow\)Góc ACD = 45°
Vậy : Góc ACD = 45°
Thi toán chưa bạn. cho mk xin đề