K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :

HN=ND(gt)HN=ND(gt)

ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)

AN:ChungAN:Chung

=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)

b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :

HM=ME(gt)HM=ME(gt)

AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)

AM:ChungAM:Chung

=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)

Xét tứ giác ANHM có :

Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)

Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)

Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)

=> Tứ giác ANHM là hình chữ nhật

=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)

Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)

Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)

Suy ra : ΔAND=ΔAMEΔAND=ΔAME

=> DA=AEDA=AE(2 cạnh tương ứng) (*)

c) Từ (*) => A là trung điểm của DE

Do đó : D,A,E thẳng hàng (đpcm)

1: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AN là đường cao

nên AN là đường phân giác(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AM là đường cao

nên AM là đường phân giác(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

2: Xét ΔHED có 

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

1: Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AM là đường cao

nên AM là đường phân giác(1)

Xét ΔAHD có 
AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AN là đường cao

nên AN là đường phân giác(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

2: Xét ΔHED có 

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

4: Ta có: AH=AD

mà AH=AE

nên AD=AE=AH

a: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

b: Xét ΔHED có

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó:ΔDHE vuông tại H

14 tháng 1 2017

link nè bạn http://lazi.vn/edu/exercise/cho-tam-giac-nhon-abc-ke-duong-cao-ah-tu-h-ke-he-vong-goc-ab-e-thuoc-ab-ke-f-vuong-goc-voi-ac-f-thuoc-ac

k mk nhé thanks

22 tháng 1 2018

Này người lạ ơi

.

. đừng nhìn đi đâu

- đúng rồi

- là bạn đó

- cho mình xin 1 ( t í c h)  nhé :)

- còn việc kết bạn cứ để mik lo

14 tháng 2 2016

moi hok lop 6

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0